首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is shown that if P m α,β (x) (α, β > ?1, m = 0, 1, 2, …) are the classical Jaboci polynomials, then the system of polynomials of two variables {Ψ mn α,β (x, y)} m,n=0 r = {P m α,β (x)P n α,β (y)} m, n=0 r (r = m + nN ? 1) is an orthogonal system on the set Ω N×N = ?ub;(x i , y i ) i,j=0 N , where x i and y i are the zeros of the Jacobi polynomial P n α,β (x). Given an arbitrary continuous function f(x, y) on the square [?1, 1]2, we construct the discrete partial Fourier-Jacobi sums of the rectangular type S m, n, N α,β (f; x, y) by the orthogonal system introduced above. We prove that the order of the Lebesgue constants ∥S m, n, N α,β ∥ of the discrete sums S m, n, N α,β (f; x, y) for ?1/2 < α, β < 1/2, m + nN ? 1 is O((mn) q + 1/2), where q = max?ub;α,β?ub;. As a consequence of this result, several approximate properties of the discrete sums S m, n, N α,β (f; x, y) are considered.  相似文献   

2.
Let (P, ≤) be a finite poset (partially ordered set), where P has cardinality n. Consider linear extensions of P as permutations x1x2?xn in one-line notation. For distinct elements x, yP, we define ?(x ? y) to be the proportion of linear extensions of P in which x comes before y. For \(0\leq \alpha \leq \frac {1}{2}\), we say (x, y) is an α-balanced pair if α ≤ ?(x ? y) ≤?1 ? α. The 1/3–2/3 Conjecture states that every finite partially ordered set which is not a chain has a 1/3-balanced pair. We make progress on this conjecture by showing that it holds for certain families of posets. These include lattices such as the Boolean, set partition, and subspace lattices; partial orders that arise from a Young diagram; and some partial orders of dimension 2. We also consider various posets which satisfy the stronger condition of having a 1/2-balanced pair. For example, this happens when the poset has an automorphism with a cycle of length 2. Various questions for future research are posed.  相似文献   

3.
We study the number of nonstationary bounded trajectories of autonomous systems of the form z′ = \(\overline {P_n (z)} \), z = x + iy ∈ C, where P n (z) is a polynomial of degree n with complex coefficients that has k distinct roots, n, k > 1. We prove that the number N of nonstationary bounded trajectories of this system satisfies the following assertions (Theorem 1): (a) N = n + k ? N +, N + = N ?, n + 1 ≤ N +n + k, where N + and N ? are the numbers of system trajectories unbounded as t → +∞ and t → ?∞, respectively; (b) if some r distinct roots \(c_{j_1 } \), ..., \(c_{j_r } \) of the polynomial P n satisfy the relations V n+1 (\(c_{j_1 } \)) = ··· = V n+1 (\(c_{j_r } \)), where V n+1 is the imaginary part of the indeterminate integral of P n , then N\(m_{j_1 } \) + ··· + \(m_{j_r } \) + r ? n ? 1; (c) if k = 2, then the conditions N = 1 and V n+1 (c 1) = V n+1 (c 2) are equivalent. For n = k = 3, we derive a formula for the number of nonstationary bounded trajectories (Theorem 2).  相似文献   

4.
We prove that, for any real numbers ξ ≠ 0 and ν, the sequence of integer parts [ξ2 n  + ν], n = 0, 1, 2, . . . , contains infinitely many composite numbers. Moreover, if the number ξ is irrational, then the above sequence contains infinitely many elements divisible by 2 or 3. The same holds for the sequence [ξ( ? 2) n  + ν n ], n = 0, 1, 2, . . . , where ν 0, ν 1, ν 2, . . . all lie in a half open real interval of length 1/3. For this, we show that if a sequence of integers x 1, x 2, x 3, . . . satisfies the recurrence relation x n+d  = cx n  + F(x n+1, . . . , x n+d-1) for each n  ≥  1, where c ≠ 0 is an integer, \({F(z_1,\dots,z_{d-1}) \in \mathbb {Z}[z_1,\dots,z_{d-1}],}\) and lim n→ ∞|x n | = ∞, then the number |x n | is composite for infinitely many positive integers n. The proofs involve techniques from number theory, linear algebra, combinatorics on words and some kind of symbolic computation modulo 3.  相似文献   

5.
Let α be an automorphism of a finite group G. For a positive integer n, let E G,n (α) be the subgroup generated by all commutators [...[[x,α],α],…,α] in the semidirect product G 〈α〉 over xG, where α is repeated n times. By Baer’s theorem, if E G,n (α)=1, then the commutator subgroup [G,α] is nilpotent. We generalize this theorem in terms of certain length parameters of E G,n (α). For soluble G we prove that if, for some n, the Fitting height of E G,n (α) is equal to k, then the Fitting height of [G,α] is at most k + 1. For nonsoluble G the results are in terms of the nonsoluble length and generalized Fitting height. The generalized Fitting height h*(H) of a finite group H is the least number h such that F h* (H) = H, where F 0* (H) = 1, and F i+1* (H) is the inverse image of the generalized Fitting subgroup F*(H/F i *(H)). Let m be the number of prime factors of the order |α| counting multiplicities. It is proved that if, for some n, the generalized Fitting height E G,n (α) of is equal to k, then the generalized Fitting height of [G,α] is bounded in terms of k and m. The nonsoluble length λ(H) of a finite group H is defined as the minimum number of nonsoluble factors in a normal series each of whose factors either is soluble or is a direct product of nonabelian simple groups. It is proved that if λE G,n (α)= k, then the nonsoluble length of [G,α] is bounded in terms of k and m. We also state conjectures of stronger results independent of m and show that these conjectures reduce to a certain question about automorphisms of direct products of finite simple groups.  相似文献   

6.
We investigate the equiconvergence on TN = [?π, π)N of expansions in multiple trigonometric Fourier series and in the Fourier integrals of functions fLp(TN) and gLp(RN), p > 1, N ≥ 3, g(x) = f(x) on TN, in the case where the “partial sums” of these expansions, i.e., Sn(x; f) and Jα(x; g), respectively, have “numbers” n ∈ ZN and α ∈ RN (nj = [αj], j = 1,..., N, [t] is the integral part of t ∈ R1) containing N ? 1 components which are elements of “lacunary sequences.”  相似文献   

7.
The paper studies a Hilbert boundary value problem in L 1(ρ), where ρ(t) = |1–t|α and α is a real number. For α > ?1, it is proved that the homogeneous problem has n + κ linearly independent solutions when n + κ ≥ 0, where a(t) is the coefficient of the problem, besides, κ ind a(t) and n = [α] + 1 if α is not an integer, and n = α if α is an integer. Conditions under which the problem is solvable are found for the case when α > ?1 and n+κ < 0. For α ≤ ?1 the number of linearly independent solutions of the homogeneous problem depends on the behavior of the function a(t) at the point t = 1.  相似文献   

8.
Given a large positive number x and a positive integer k, we denote by Qk(x) the set of congruent elliptic curves E(n): y2= z3- n2 z with positive square-free integers n x congruent to one modulo eight,having k prime factors and each prime factor congruent to one modulo four. We obtain the asymptotic formula for the number of congruent elliptic curves E(n)∈ Qk(x) with Mordell-Weil ranks zero and 2-primary part of Shafarevich-Tate groups isomorphic to(Z/2Z)2. We also get a lower bound for the number of E(n)∈ Qk(x)with Mordell-Weil ranks zero and 2-primary part of Shafarevich-Tate groups isomorphic to(Z/2Z)4. The key ingredient of the proof of these results is an independence property of residue symbols. This property roughly says that the number of positive square-free integers n x with k prime factors and residue symbols(quadratic and quartic) among its prime factors being given compatible values does not depend on the actual values.  相似文献   

9.
For yx 4/5 L 8B+151 (where L = log(xq) and B is an absolute constant), a nontrivial estimate is obtained for short cubic exponential sums over primes of the form S 3(α; x, y) = ∑ x?y<nx Λ(n)e(αn 3), where α = a/q + θ/q 2, (a, q) = 1, L 32(B+20) < qy 5 x ?2 L ?32(B+20), |θ| ≤ 1, Λ is the von Mangoldt function, and e(t) = e 2πit.  相似文献   

10.
Let {X, X_n; n ≥ 0} be a sequence of independent and identically distributed random variables with EX=0, and assume that EX~2I(|X| ≤ x) is slowly varying as x →∞, i.e., X is in the domain of attraction of the normal law. In this paper, a self-normalized law of the iterated logarithm for the geometrically weighted random series Σ~∞_(n=0)β~nX_n(0 β 1) is obtained, under some minimal conditions.  相似文献   

11.
An IP system is a functionn taking finite subsets ofN to a commutative, additive group Ω satisfyingn(α∪β)=n(α)+n(β) whenever α∩β=ø. In an extension of their Szemerédi theorem for finitely many commuting measure preserving transformations, Furstenberg and Katznelson showed that ifS i ,1≤i≤k, are IP systems into a commutative (possibly infinitely generated) group Ω of measure preserving transformations of a probability space (X, B, μ, andAB with μ(A)>0, then for some ø≠α one has μ(? i=1 k S i({α})A>0). We extend this to so-called FVIP systems, which are polynomial analogs of IP systems, thereby generalizing as well joint work by the author and V. Bergelson concerning special FVIP systems of the formS(α)=T(p(n(α))), wherep:Z t Z d is a polynomial vanishing at zero,T is a measure preservingZ d action andn is an IP system intoZ t . The primary novelty here is potential infinite generation of the underlying group action, however there are new applications inZ d as well, for example multiple recurrence along a wide class ofgeneralized polynomials (very roughly, functions built out of regular polynomials by iterated use of the greatest integer function).  相似文献   

12.
Let x 0, x 1,? , x n , be a set of n + 1 distinct real numbers (i.e., x i x j , for ij) and y i, k , for i = 0,1,? , n, and k = 0 ,1 ,? , n i , with n i ≥ 1, be given of real numbers, we know that there exists a unique polynomial p N ? 1(x) of degree N ? 1 where \(N={\sum }_{i=0}^{n}(n_{i}+1)\), such that \(p_{N-1}^{(k)}(x_{i})=y_{i,k}\), for i = 0,1,? , n and k = 0,1,? , n i . P N?1(x) is the Hermite interpolation polynomial for the set {(x i , y i, k ), i = 0,1,? , n, k = 0,1,? , n i }. The polynomial p N?1(x) can be computed by using the Lagrange polynomials. This paper presents a new method for computing Hermite interpolation polynomials, for a particular case n i = 1. We will reformulate the Hermite interpolation polynomial problem and give a new algorithm for giving the solution of this problem, the Matrix Recursive Polynomial Interpolation Algorithm (MRPIA). Some properties of this algorithm will be studied and some examples will also be given.  相似文献   

13.
Asymptotic formulas for sums of values of some class of smooth functions of fractional parts of numbers of the form x/n, where the parameter x increases unboundedly and the integer n ranges over various subsets of the interval [1, x], are obtained.  相似文献   

14.
The nonsoluble length λ(G) of a finite group G is defined as the minimum number of nonsoluble factors in a normal series of G each of whose quotients either is soluble or is a direct product of nonabelian simple groups. The generalized Fitting height of a finite group G is the least number h = h* (G) such that F* h (G) = G, where F* 1 (G) = F* (G) is the generalized Fitting subgroup, and F* i+1(G) is the inverse image of F* (G/F*i (G)). In the present paper we prove that if λ(J) ≤ k for every 2-generator subgroup J of G, then λ(G) ≤ k. It is conjectured that if h* (J) ≤ k for every 2-generator subgroup J, then h* (G) ≤ k. We prove that if h* (〈x, xg 〉) ≤ k for allx, gG such that 〈x, xg 〉 is soluble, then h* (G) is k-bounded.  相似文献   

15.
Let Ω = {t0, t1, …, tN} and ΩN = {x0, x1, …, xN–1}, where xj = (tj + tj + 1)/2, j = 0, 1, …, N–1 be arbitrary systems of distinct points of the segment [–1, 1]. For each function f(x) continuous on the segment [–1, 1], we construct discrete Fourier sums Sn, N( f, x) with respect to the system of polynomials {p?k,N(x)} k=0 N–1 , forming an orthonormal system on nonuniform point systems ΩN consisting of finite number N of points from the segment [–1, 1] with weight Δtj = tj + 1tj. We find the growth order for the Lebesgue function Ln,N (x) of the considered partial discrete Fourier sums Sn,N ( f, x) as n = O(δ N ?2/7 ), δN = max0≤ jN?1 Δtj More exactly, we have a two-sided pointwise estimate for the Lebesgue function Ln, N(x), depending on n and the position of the point x from [–1, 1].  相似文献   

16.
The sequence of Jacobi polynomials \(\{P_{n}^{(\alpha ,\beta )}\}_{n = 0}^{\infty }\) is orthogonal on (??1,1) with respect to the weight function (1 ? x)α(1 + x)β provided α > ??1,β > ??1. When the parameters α and β lie in the narrow range ??2 < α, β < ??1, the sequence of Jacobi polynomials \(\{P_{n}^{(\alpha ,\beta )}\}_{n = 0}^{\infty }\) is quasi-orthogonal of order 2 with respect to the weight function (1 ? x)α+?1(1 + x)β+?1 and each polynomial of degree n,n ≥?2, in such a Jacobi sequence has n real zeros. We show that any sequence of Jacobi polynomials \(\{P_{n}^{(\alpha ,\beta )}\}_{n = 0}^{\infty }\) with ??2 < α, β < ??1, cannot be orthogonal with respect to any positive measure by proving that the zeros of Pn??1(α,β) do not interlace with the zeros of Pn(α,β) for any \(n \in \mathbb {N},\)n ≥?2, and any α,β lying in the range ??2 < α, β < ??1. We also investigate interlacing properties satisfied by the zeros of equal degree Jacobi polynomials Pn(α,β),Pn(α,β+?1) and Pn(α+?1,β+?1) where ??2 < α, β < ??1. Upper and lower bounds for the extreme zeros of quasi-orthogonal order 2 Jacobi polynomials Pn(α,β) with ??2 < α, β < ??1 are derived.  相似文献   

17.
We prove that if X is a real Banach space, Y 1 ? Y 2 ? ... is a sequence of strictly embedded closed linear subspaces of X, and d 1d 2 ≥ ... is a nonincreasing sequence converging to zero, then there exists an element xX such that the distance ρ(x, Y n ) from x to Y n satisfies the inequalities d n ρ(x, Y n ) ≤ 8d n for n = 1, 2, ....  相似文献   

18.
The Ramsey number r(K 3,Q n ) is the smallest integer N such that every red-blue colouring of the edges of the complete graph K N contains either a red n-dimensional hypercube, or a blue triangle. Almost thirty years ago, Burr and Erd?s conjectured that r(K 3,Q n )=2 n+1?1 for every n∈?, but the first non-trivial upper bound was obtained only recently, by Conlon, Fox, Lee and Sudakov, who proved that r(K 3,Q n )?7000·2 n . Here we show that r(K 3,Q n )=(1+o(1))2 n+1 as n→∞.  相似文献   

19.
Let (M m , T) be a smooth involution on a closed smooth m-dimensional manifold and F = ∪ j=0 n F j (nm) its fixed point set, where F j denotes the union of those components of F having dimension j. The famous Five Halves Theorem of J. Boardman, announced in 1967, establishes that, if F is nonbounding, then m ≤ 5/2n. In this paper we obtain an improvement of the Five Halves Theorem when the top dimensional component of F, F n , is nonbounding. Specifically, let ω = (i 1, i 2, …, i r ) be a non-dyadic partition of n and s ω (x 1, x 2, …, x n ) the smallest symmetric polynomial over Z 2 on degree one variables x 1, x 2, …, x n containing the monomial \(x_1^{i_1 } x_2^{i_2 } \cdots x_r^{i_r }\). Write s ω (F n ) ∈ H n (F n , Z 2) for the usual cohomology class corresponding to s ω (x 1, x 2, …, x n ), and denote by ?(F n ) the minimum length of a nondyadic partition ω with s ω (F n ) ≠ 0 (here, the length of ω = (i 1, i 2, …, i r ) is r). We will prove that, if (M m , T) is an involution for which the top dimensional component of the fixed point set, F n , is nonbounding, then m ≤ 2n + ?(F n ); roughly speaking, the bound for m depends on the degree of decomposability of the top dimensional component of the fixed point set. Further, we will give examples to show that this bound is best possible.  相似文献   

20.
We study the Nikol’skii inequality for algebraic polynomials on the interval [?1, 1] between the uniform norm and the norm of the space L q (α,β) , 1 ≤ q < ∞, with the Jacobi weight ?(α,β)(x) = (1 ? x) α (1 + x) β , αβ > ?1. We prove that, in the case α > β ≥ ?1/2, the polynomial with unit leading coefficient that deviates least from zero in the space L q (α+1,,β) with the Jacobi weight ? (α+1,β)(x) = (1?x) α+1(1+x) β is the unique extremal polynomial in the Nikol’skii inequality. To prove this result, we use the generalized translation operator associated with the Jacobi weight. We describe the set of all functions at which the norm of this operator in the space L q (α,β) for 1 ≤ q < ∞ and α > β ≥ ?1/2 is attained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号