首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The absorption spectra of the 4f electron transitions of neodymium, praseodymium, holmium and erbium complexes with fleroxacin in the presence of cetylpyridinium chloride were studied by normal and derivative spectrophotometry. Their molar absorptivity at the maximum absorption bands are about 5.3 (at 571 nm) times greater for neodymium, 2.8 (at 483 nm) times greater for praseodymium, 12.6 (at 448.5 nm) times greater for holmium and 9.7 (at 519 nm) times greater for erbium than those in the absence of complexing agents. The second-derivative spectrum is used both to eliminate the interference from other rare earths and to improve the sensitivity. Beer's law is obeyed from 3.0 - 70 microg ml(-1) for neodymium and holmium, from 6.0 - 70 microg ml(-1) for erbium, and from 12.0 - 70 microg ml(-1) for praseodymium. The relative standard deviations are 1.9% and 1.5% for 7.5 microg ml(-1) of neodymium and holmium, and 2.1% and 1.6% for 15.0 microg ml(-1) of praseodymium and erbium, respectively. Their detection limits (signal-to-noise ratio = 2) are 3.2 microg ml(-1), 1.3 microg ml(-1), (1.1) microg ml(-1) and 2.5 microg ml(-1) for praseodymium, neodymium, holmium and erbium, respectively. A new system for the simultaneous determinations of the praseodymium, neodymium, holmium and erbium in rare earth mixtures with good accuracy and selectivity is proposed.  相似文献   

2.
The use of sodium hexametaphosphate in the spectrofluorometric determination of trace amounts of cerium(III) ions is described. Sodium hexametaphosphate acts as a specific reagent for enhancing the fluorescence intensity of cerium(III) in aqueous solutions. The apparent excitation and fluorescence wavelength used are 304 and 344 nm, respectively. Maximum fluorescence intensity is obtained by irradiating Ce(III) dissolved in 5.346 g/l sodium hexametaphosphate solution at room temperature. The fluorescence varies linearly with the concentration of cerium(III) in the range of 0.001-60 microg/ml. The coefficient of variation for 45 microg/ml Ce(III) in 5.346 g/l sodium hexametaphosphate solution is 1. The quenching effects of other lanthanides and some inorganic anions are given. This technique permits a direct and rapid determination of cerium(III) in rare earth mixtures and cerium concentrates.  相似文献   

3.
A flow injection procedure for the sequential spectrophotometric determination of iron(II) and iron(III) in pharmaceutical products is described. The method is based on the catalytic effect of iron(II) on the oxidation of iodide by bromate at pH = 4.0. The reaction was monitored spectrophotometrically by measuring the absorbance of produced triiodide ion at 352 nm. The activating effect for the catalysis of iron(II) was extremely exhibited in the presence of oxalate ions, while oxalate acted as a masking agent for iron(III). The iron(III) in a sample solution could be determined by passing through a Cd-Hg reductor column introduced in the FIA system to reduce iron(III) to iron(II), which allows total iron determination. Under the optimum conditions, iron(II) and iron(III) could be determined over the range of 0.05 - 5.0 and 0.10 - 5.0 microg ml(-1), respectively with a sampling rate of 17 +/- 5 h(-1). The experimental limits of detection were 0.03 and 0.04 microg ml(-1) for iron(II) and iron(III), respectively. The proposed method was successfully applied to the speciation of iron in pharmaceutical products.  相似文献   

4.
Z Zhu 《Analytical sciences》2001,17(12):1375-1377
A novel fluorometric method has been developed for rapid determination of DNA and RNA with calcein-neodymium complex as a fluorescence probe. The method is based on the fluorescence enhancement of calcein-Nd(III) complex in the presence of DNA or RNA, with maximum excitation and emission wavelength at 489 nm and 514 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range 0.5 - 3.0 microg/ml for both DNA and yeast RNA, 0.4 - 2.0 microg/ml for fish sperm DNA (FS DNA) and 0 - 3.0 microg/ml for calf thymus DNA (CT DNA). The corresponding detection limits are 15.1 ng/ml for DNA, 21.2 ng/ml for yeast RNA, 10.5 ng/ml for FS DNA and 8.9 ng/ml for CT DNA. The interaction mechanism for the binding of calcein-Nd(III) complex to DNA is also studied. The results of absorption spectra, fluorescence polarization measurements and thermal denaturation experiments, suggested that the interaction between calcein-Nd(III) complex and DNA is an electrostatic interaction.  相似文献   

5.
Akseli A  Rakicioğlu Y 《Talanta》1996,43(11):1983-1988
Sodium triphosphate acts as a specific reagent for enhancing the fluorescence intensity of cerium(III). The purpose of this study was to investigate the spectrofluorimetric determination of trace amounts of Ce(III) in sodium triphosphate solution. The excitation and emission wavelengths are 303.5 nm and 353 nm respectively. Optimum sodium triphosphate concentration is found to be 0.074 g l(-1) at room temperature. The fluorescence varies linearly with the concentration of cerium(III) in the range 0.001-45 mug ml(-1). The detection limit is 9.4 x 10(-4)mug ml(-1). The relative standard deviations for 30 mug ml(-1) and 0.05 mug ml(-1) Ce(III) in 0.074 g l(-1) sodium triphosphate solution are 1.1% and 0.72% respectively. Quenching effects of other lanthanides and some inorganic anions are described. This method is a direct and rapid analytical method for the determination of Ce(III) in rare earth mixtures and cerium concentrates.  相似文献   

6.
Simple and sensitive spectrophotometric and spectrofluorimetric methods are described for analysis of acebutolol hydrochloride. The proposed methods are based on oxidation of the selected drug with cerium(IV) ion in acidic medium with subsequent measurement of either the decrease in absorbance at 320 nm or the fluorescence intensity of the produced cerous(III) ion at 363 nm (excitation at 250 nm). Beer's law obeyed from 1.0-7.0 microg ml(-1) and 0.25-2.5 microg ml(-1) acebutolol hydrochloride, using the spectrophotometric and spectrofluorimetric method, respectively. The proposed methods were successfully applied for determination of the selected drug in its pharmaceutical preparation with good recoveries.  相似文献   

7.
A spectrofluorimetric method was described for the determination of drugs containing active methylene groups adjacent to carbonyl groups. The method was applied successfully to the determination of three life saving cardiovascular drugs, with narrow therapeutic indices: pentoxifylline (I), propafenone hydrochloride (II) and acebutolol hydrochloride (III), in laboratory-prepared mixtures, in commercial tablets and in plasma samples. The method involved the reaction of each of the tested drugs with N1-methyl nicotinamide chloride (NMNCl) in the presence of alkali, followed by addition of formic acid, where highly fluorescent reaction products were produced. The produced fluorescence were measured quantitatively at 472 nm (lambdaex 352 nm), 409 nm (lambdaex 310 nm) and 451 nm (lambdaex 266 nm) for (I), (II), and (III) respectively. The method was linear over concentration ranges of 10-1000 microg/ml , 0.2-12 microg/ml and 0.08-10 microg/ml in standard solutions for (I), (II), and (III) respectively. In spiked human plasma samples, calibration graphs were linear over concentration ranges of 20-1000 microg/ml, 0.2-15 microg/ml and 0.08-10 microg/ml for (I), (II), and (III) respectively. The method showed good accuracy, specificity and precision in both laboratory-prepared mixtures and spiked human plasma samples. The proposed method is simple, with low instrumentation requirements, suitable for quality control application, bioavailability and bioequivalency studies.  相似文献   

8.
Cysteine-capped ZnS nanometer-sized fluorescent particles were produced by a colloidal aqueous synthesis. The functionalized nanoparticles are water-soluble and suitable for biological application. A synchronous fluorescence method has been developed for the rapid determination of DNA with functionalized nano-ZnS as a fluorescence probe, based on the synchronous fluorescence enhancement of cysteine-capped nano-ZnS in the presence of DNA. When Deltalambda =190 nm, maximum synchronous fluorescence is produced at 267 nm at pH 5.12. Under optimum conditions, the synchronous fluorescence intensity is proportional to the concentration of nucleic acids in the range 0.1-1.2 microg ml(-1) for calf thymus DNA, 0.1-0.6 microg ml(-1) for fish sperm DNA. The corresponding detection limit is 32.9 ng ml(-1) for calf thymus DNA and 24.6 ng ml(-1) for fish sperm DNA. This method is simple, inexpensive, rapid and sensitive. The recovery and relative standard deviation are satisfactory.  相似文献   

9.
A novel composite nanoparticle has been prepared by an in situ polymerization method and applied as a protein fluorescence probe. The nano-CdS has been prepared, then the polymerization of acrylic acid (AA) was carried out by initiator potassium persulfate (KPS) under ultrasonic irradiation. The surface of the composite nanoparticles was covered with abundant carboxylic groups (--COOH). The nanoparticles are water-soluble, stable, and biocompatible. The synchronous fluorescence intensity of the composite nanoparticles is significantly increased in the presence of trace protein at pH 6.90. Based on this, a new synchronous fluorescence scan (SFS) analysis was developed for the determination of proteins including BSA, HSA, and human gamma-IgG. When Delta lambda = 280 nm, maximum synchronous fluorescence is produced at 290 nm. Under the optimum conditions, the response is linearly proportional to the concentration of proteins. The linear range is 0.1-10 microg ml(-1) for HSA, 0.09-8.0 microg ml(-1) for BSA, and 0.08-15 microg ml(-1) for human gamma-IgG, respectively. The method has been applied to the determination of the total protein in human serum samples collected from the hospital and the results are satisfactory.  相似文献   

10.
Three sensitive, selective, accurate spectrophotometric and spectrofluorimetric methods have been developed for the determination of ropinirole hydrochloride in tablets. The first method was based on measuring the absorbance of drug solution in methanol at 250 nm. The Beer's law was obeyed in the concentration range 2.5-24 microg ml(-1). The second method was based on the charge transfer reaction of drug, as n-electron donor with 7,7,8,8-tetracyanoquinodimethane (TCNQ), as pi-acceptor in acetonitrile to give radical anions that are measured at 842 nm. The Beer's law was obeyed in the concentration range 0.6-8 microg ml(-1). The third method was based on derivatization reaction with 4-chloro-7-nitrobenzofurazan (NBD-Cl) in borate buffer of pH 8.5 followed by measuring the fluorescence intensity at 525 nm with excitation at 464 nm in chloroform. Beer's law was obeyed in the concentration range 0.01-1.3 microg ml(-1). The derivatization reaction product of drug with NBD-Cl was characterized by IR, 1H NMR and mass spectroscopy. The developed methods were validated. The following analytical parameters were investigated: the molar absorptivity (epsilon), limit of detection (LOD, microg ml(-1)) and limit of quantitation (LOQ, microg ml(-1)), precision, accuracy, recovery, and Sandell's sensitivity. Selectivity was validated by subjecting stock solution of ropinirole to acidic, basic, oxidative, and thermal degradation. No interference was observed from common excipients present in formulations. The proposed methods were successfully applied for determination of drug in tablets. The results of these proposed methods were compared with each other statistically.  相似文献   

11.
A new rapid and sensitive FI method is reported for spectrophotometric determination of trace chromium(VI) in electroplating waste water. The method is based on the reaction of Cr(VI) with sodium diphenylamine sulfonate (DPH) in acidic medium to form a purple complex (lambda(max) = 550 nm). Under the optimized conditions, the calibration curve is linear in the range 0.04-3.8 microg ml(-1) at a sampling rate of 30 h(-1). The detection limit of the method is 0.0217 microg ml(-1), and the relative standard deviation is 1.1% for eight determinations of 2 microg ml(-1) Cr(VI). The proposed method was applied to the determination of chromium in electroplating waste water with satisfactory results.  相似文献   

12.
A sensitive and selective method for simultaneous determination of carvedilol and dopamine was described. The emission wavelengths of carvedilol and dopamine were at 354 nm and 314 nm with the excitation at 290 nm, respectively. The determination of carvedilol and dopamine by normal fluorometry was difficult because the emission spectra of carvedilol and dopamine were overlapped seriously. The first derivative peaks of carvedilol and dopamine were at 336 nm and 302 nm, respectively. The linear regression equations of the calibration graphs of carvedilol and dopamine were C = 0.000557H-0.00569 and C = 0.00438H-0.0812, with the correlation coefficients were 0.9953 and 0.9988, respectively. The liner range for the determination of carvedilol was 0.002 microg ml(-1) to 0.02 microg ml(-1), and 0.05 microg ml(-1) to 0.6 microg ml(-1) for dopamine. The detection limits were 1 ng ml(-1) for carvedilol and 0.04 microg ml(-1) for dopamine, respectively. The relative standard derivative (RSD) of 4.38% and 4.35% was observed for carvedilol and dopamine, respectively. The recovery of carvedilol was from 95.00% to 106.7% in human serum and from 97.50% to 105.0% in urine sample. The recovery of dopamine was from 100.0% to 102.5% in human serum and from 97.50% to 105.0% in urine sample. This method is simple and can be used for determination of carvedilol and dopamine in human serum and urine sample with satisfactory results.  相似文献   

13.
Chen X  Wang W  Wang J 《The Analyst》2005,130(9):1240-1244
An automatic protocol for in-situ assay of dsDNA is presented by employing a micro-sequential injection lab-on-valve meso-fluidic system, which facilitates precise fluidic handling at the 0.1-10 microl level. Sub-nano-liter to a few micro-liters of DNA sample and ethidium bromide (EB) solutions were introduced into the meso-fluidic system, where EB binding onto DNA takes place and an intercalated DNA-EB adduct was formed, which was afterwards excited in the flow cell of the LOV by a 473 nm laser beam, and the emitted fluorescence was monitored in-situvia optical fibers. The experimental variables, i.e., pH of the buffer solution, the concentration and volume of EB solution, the reaction time and the fluid flow rates, were investigated. By loading 600 nl sample and 1.0 microl EB solution, a linear calibration graph was obtained within 0.03-3.0 microg ml(-1)(dsDNA), and a detection limit (3sigma) of 0.009 microg ml(-1) was achieved, along with a sampling frequency of 60 h(-1) and a precision of 1.9% at the 1.0 microg ml(-1) level. The detection limit was further improved to 0.006 microg ml(-1) by increasing the sample volume to 2.0 microl. Plasmid DNA in E. Coli extraction and lambda-DNA/Hind III in four synthetic samples were assayed by using this procedure. For the plasmid DNA, a good agreement with the documented UV method was obtained, while spiking recoveries for the synthetic samples were 95.6-103.4%.  相似文献   

14.
A selective and sensitive spectrophotometric method for the determination of Th(IV) has been based on the reaction with thorin and subsequent extraction of the red-orange coloured complex with N-hydroxy-N,N'-diphenylbenzamidine (HDPBA) in benzene as floated complex at pH 2.2. The complex in ethanol exhibits a maximum absorbance at 495 nm, with a molar absorptivity of 6.0x10(4) l mol(-1) cm(-1), with a Sandell's sensitivity of 3.9x10(-3) microg cm(-2). The method follows Beer's law up to 3.0 microg Th(IV) ml(-1). None of the common cations and anions tested interfere. The detection limit of the method is 0.04 microg Th(IV) ml(-1), the RSD (n=10) is 1.4%. The method has been successfully employed for the determination of thorium in various standard and monazite samples.  相似文献   

15.
A new boron dipyrromethene (BODIPY) modified 8-hydroxylquinoline ligand (8-HOQ-BODIPY) is synthesized for the sensitization of near-infrared emission of lanthanide(III) ions. The BODIPY unit, as revealed by single-crystal X-ray diffraction analysis, aligns almost perpendicularly to the 8-HOQ unit. The ligand exhibits strong absorption at ~506 nm and fluorescence at 510 nm in organic solvents with quantum yields ranging from ~0.45 in dichloromethane to 0.015 in ethanol. It forms stable ytterbium(III), erbium(III) and neodymium(III) complexes with 3:1 ligand-to-metal molar ratios. Upon excitation (~522 nm), the neodymium(III) and erbium(III) complexes emit weakly at 1060 and 1382 nm, respectively, whereas the ytterbium(III) complex exhibits strong emission at 976 and 1003 nm. The results demonstrate the potential of BODIPY dyes as efficient and robust visible light sensitizers for lanthanide-based NIR emitters in medical diagnosis.  相似文献   

16.
Four sensitive, simple and specific methods were developed for the determination of desloratadine (DSL), a new antihistaminic drug in pharmaceutical preparations and biological fluids. Methods I and II are based on coupling DSL with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) in borate buffer of pH 7.6 where a yellow colored reaction product was obtained and measured spectrophotometrically at 485 nm (Method I). The same product could be measured spectrofluorometrically at 538 nm after excitation at 480 nm (Method II). Methods III and IV, on the other hand, involved derivatization of DSL with 2,4-dinitrofluorobenzene (DNFB) in borate buffer of pH 9.0 producing a yellow colored product that absorbs maximally at 375 nm (Method III). The same derivative was determined after separation adopting HPLC (Method IV). The separation was performed on a column packed with cyanopropyl bonded stationary phase equilibrated with a mobile phase composed of acetonitrile-water (60 : 40, v/v) at a flow rate of 1.0 ml min(-1) with UV detection at 375 nm. The calibration curves were linear over the concentration ranges of 0.5-6, 0.02-0.4, 1-10 and 1-30 microg ml(-1) for Methods I, II, III and IV, respectively. The lower detection limits (LOD) were 0.112, 0.004, 0.172 and 0.290 microg ml(-1), respectively, for the four methods. The limits of quantification (LOQ) were 0.340, 0.012, 0.522 and 0.890 microg ml(-1) for Methods I, II, III and IV, respectively. The proposed methods were applied to the determination of desloratadine in its tablets and the results were in agreement with those obtained using a reference method. Furthermore, the spectrofluorometric method (Method II) was extended to the in-vitro determination of the drug in spiked human plasma, with a mean percentage recovery (n=4) of 99.7+/-3.54. Interference arising from endogenous amino acids has been overcome using solid phase extraction. The proposed methods are highly specific for determination of DSL in the presence of the parent drug loratadine. A proposal for the reaction pathways is postulated.  相似文献   

17.
Ion-pairing reversed-phase liquid chromatography (RPLC) was used to separate two polysulfonates, rutin nona(H-) sulfonate sodium and rutin deca(H-) sulfonate sodium, which have very similar chemical structures. The final product always contained both of them when one of the compounds was synthesized. Baseline separation was achieved on a C8-bonded silica column at ambient temperature. The eluent was acetonitrile-15 mM phosphate buffer solution containing 20 mM TBA (pH 6.0) (46:54, v/v). The calibration plot was linear in the concentration range 0.5-200 microg ml(-1) for both analytes. The limits of detection (LODs; 254 nm) were 0.03 microg ml(1-) for rutin nona(H-) sulfonate sodium and 0.04 microg ml(-1) for rutin deca(H-) sulfonate sodium. Three batches of rutin deca(H-) sulfonate sodium were analyzed using the assay; the results showed that the analytical performance is really satisfactory.  相似文献   

18.
A new chromogenic reagent, 5-(2-hydroxy-5-nitrophenylazo)thiorhodanine (HNATR) was synthesized. A highly sensitive, selective and rapid method for the determination microg l(-1) level of Au(III) based on the rapid reaction of Au(III) with HNATR and the solid phase extraction of the colored complex with a reversed phase polymer-based C(18) cartridge have been developed. The HNATR reacted with Au(III) to form a red complex of a molar ratio 1:2 (Au(III) to HNATR) in the presence of 0.05 - 0.5 mol l(-1) of phosphoric acid solution and emulsifier-OP medium. This complex was enriched by the solid phase extraction with a polymer-based C(18) cartridge. The enrichment factor of 100 was achieved. The molar absorptivity of the complex is 1.37 x 10(5) l mol(-1) cm(-1) at 520 nm in the measured solution. The system obeys Beer's law in the range of 0.01 - 3 microg ml(-1). The relative standard deviation for eleven replicates sample of 0.5 microg l(-1) level is 2.18%. The detection limit, based on the three times of standard deviation is 0.02 microg l(-1) in the original sample. This method was applied to the determination of gold in water and ore with good results.  相似文献   

19.
A new spectrofluorometric method was developed for the determination of trace amounts of heparin (Hep). Using ciprofloxacin (CIP)-terbium (Tb3+) as a fluorescent probe, in a buffer solution of pH 7.20, Hep can remarkably enhance the fluorescence intensity of the CIP-Tb3+ complex at lambda = 545 nm; also, the enhanced fluorescence intensity the Tb3+ ion is proportional to the concentration of Hep. The optimum conditions for the determination of Hep were also investigated. The dynamic range for the determination of Hep is 0.1 - 1.2 microg ml(-1) with a detection limit of 6.89 ng ml(-1). This method is simple, practical and relatively free of interference from coexisting substances, and can be successfully applied to assess Hep in biological samples. By the Rosenthanl graphic method, the association constant and binding numbers of heparin with the probe are 2.44 x 10(5) l mol(-1) and 19.7. Moreover, the enhancement mechanisms of the fluorescence intensity in the CIP-Tb3+ system and the CIP-Tb3+-Hep system have also been considered.  相似文献   

20.
A rapid flow injection (FI) spectrophotometric procedure for tetracycline determination is described. It is based on the injection of a 100 microl sample solution containing tetracycline into merged streams of aluminium(III) chloride (0.01 mol 1(-1)) and Tris-buffer in the presence of KCl (0.06 mol l(-1)), pH 7.0, with the same optimum flow rate of 3.2 ml min(-1). A yellow Al(III)-tetracycline complex was monitored at 376 nm. The flow injection system and the experimental conditions were optimized by means of the univariate method. The procedure was applied to the determination of tetracycline in pharmaceutical preparations with a high sampling rate of at least 165 h(-1). A high precision with a relative standard deviation was obtained less than 0.72 and 0.30% of 5.0 and 10 microg ml(-1) (n=11), respectively. The detection limit (3sigma) and the quantification limit (10sigma) were 0.07 and 0.72 mg l(-1), respectively. There were no interference effects from traditional excipients in the dosage forms when the method was applied to pharmaceutical preparations. The matrix effect could be reduced by the standard addition method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号