首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The global minimization of large-scale partially separable non-convex problems over a bounded polyhedral set using a parallel branch and bound approach is considered. The objective function consists of a separable concave part, an unseparated convex part, and a strictly linear part, which are all coupled by the linear constraints. These large-scale problems are characterized by having the number of linear variables much greater than the number of nonlinear variables. An important special class of problems which can be reduced to this form are the synomial global minimization problems. Such problems often arise in engineering design, and previous computational methods for such problems have been limited to the convex posynomial case. In the current work, a convex underestimating function to the objective function is easily constructed and minimized over the feasible domain to get both upper and lower bounds on the global minimum function value. At each minor iteration of the algorithm, the feasible domain is divided into subregions and convex underestimating problems over each subregion are solved in parallel. Branch and bound techniques can then be used to eliminate parts of the feasible domain from consideration and improve the upper and lower bounds. It is shown that the algorithm guarantees that a solution is obtained to within any specified tolerance in a finite number of steps. Computational results obtained on the four processor Cray 2, both sequentially and in parallel on all four processors, are also presented.  相似文献   

2.
Integer programming problems with a concave cost function are often encountered in optimization models involving economics of scale. In this paper, we propose an efficient exact algorithm for solving concave knapsack problems. The algorithm consists of an iterative process between finding lower and upper bounds by linearly underestimating the objective function and performing domain cut and partition by exploring the special structure of the problem. The lower bound is improved iteratively via cutting and partitioning the domain. This iteration process converges to the optimality in a finite number of steps. Promising computational results are reported for large-scale concave knapsack problems with up to 1200 integer variables. Comparison results with other existing methods in the literature are also presented. *Research supported by the National Natural Science Foundation of China under Grants 79970107 and 10271073,and the Research Grants Council of Hong Kong under Grant CUHK 4214/01E.  相似文献   

3.
This paper shows that the primal-dual steepest descent algorithm developed by Zhu and Rockafellar for large-scale extended linear—quadratic programming can be used in solving constrained minimax problems related to a generalC 2 saddle function. It is proved that the algorithm converges linearly from the very beginning of the iteration if the related saddle function is strongly convex—concave uniformly and the cross elements between the convex part and the concave part of the variables in its Hessian are bounded on the feasible region. Better bounds for the asymptotic rates of convergence are also obtained. The minimax problems where the saddle function has linear cross terms between the convex part and the concave part of the variables are discussed specifically as a generalization of the extended linear—quadratic programming. Some fundamental features of these problems are laid out and analyzed.This work was supported by Eliezer Naddor Postdoctoral Fellowship in Mathematical Sciences at the Department of Mathematical Sciences, the Johns Hopkins University during the year 1991–92.  相似文献   

4.
A Finite Algorithm for Global Minimization of Separable Concave Programs   总被引:3,自引:0,他引:3  
Researchers first examined the problem of separable concave programming more than thirty years ago, making it one of the earliest branches of nonlinear programming to be explored. This paper proposes a new algorithm that finds the exact global minimum of this problem in a finite number of iterations. In addition to proving that our algorithm terminates finitely, the paper extends a guarantee of finiteness to all branch-and-bound algorithms for concave programming that (1) partition exhaustively using rectangular subdivisions and (2) branch on the incumbent solution when possible. The algorithm uses domain reduction techniques to accelerate convergence; it solves problems with as many as 100 nonlinear variables, 400 linear variables and 50 constraints in about five minutes on an IBM RS/6000 Power PC. An industrial application with 152 nonlinear variables, 593 linear variables, and 417 constraints is also solved in about ten minutes.  相似文献   

5.
A new algorithm to solve nonconvex NLP problems is presented. It is based on the solution of two problems. The reformulated problem RP is a suitable reformulation of the original problem and involves convex terms and concave univariate terms. The main problem MP is a nonconvex NLP that outer-approximates the feasible region and underestimate the objective function. MP involves convex terms and terms which are the products of concave univariate functions and new variables. Fixing the variables in the concave terms, a convex NLP that overestimates the feasible region and underestimates the objective function is obtained from the MP. Like most of the deterministic global optimization algorithms, bounds on all the variables in the nonconvex terms must be provided. MP forces the objective value to improve and minimizes the difference of upper and lower bound of all the variables either to zero or to a positive value. In the first case, a feasible solution of the original problem is reached and the objective function is improved. In general terms, the second case corresponds to an infeasible solution of the original problem due to the existence of gaps in some variables. A branching procedure is performed in order to either prove that there is no better solution or reduce the domain, eliminating the local solution of MP that was found. The MP solution indicates a key point to do the branching. A bound reduction technique is implemented to accelerate the convergence speed. Computational results demonstrate that the algorithm compares very favorably to other approaches when applied to test problems and process design problems. It is typically faster and it produces very accurate results.  相似文献   

6.
高岳林  张博 《计算数学》2020,42(2):207-222
本文旨在针对线性比式和规划这一NP-Hard非线性规划问题提出新的全局优化算法.首先,通过引入p个辅助变量把原问题等价的转化为一个非线性规划问题,这个非线性规划问题的目标函数是乘积和的形式并给原问题增加了p个新的非线性约束,再通过构造凸凹包络的技巧对等价问题的目标函数和约束条件进行相应的线性放缩,构成等价问题的一个下界线性松弛规划问题,从而提出了一个求解原问题的分支定界算法,并证明了算法的收敛性.最后,通过数值结果比较表明所提出的算法是可行有效的.  相似文献   

7.
This article presents a branch and bound algorithm for globally solving the nonlinear sum of ratios problem (P). The algorithm works by globally solving a sum of ratios problem that is equivalent to problem (P). In the algorithm, upper bounds are computed by maximizing concave envelopes of a sum of ratios function over intersections of the feasible region of the equivalent problem with rectangular sets. The rectangular sets are systematically subdivided as the branch and bound search proceeds. Two versions of the algorithm, with convergence results, are presented. Computational advantages of these algorithms are indicated, and some computational results are given that were obtained by globally solving some sample problems with one of these algorithms.  相似文献   

8.
When the follower's optimality conditions are both necessary and sufficient, the nonlinear bilevel program can be solved as a global optimization problem. The complementary slackness condition is usually the complicating constraint in such problems. We show how this constraint can be replaced by an equivalent system of convex and separable quadratic constraints. In this paper, we propose different methods for finding the global minimum of a concave function subject to quadratic separable constraints. The first method is of the branch and bound type, and is based on rectangular partitions to obtain upper and lower bounds. Convergence of the proposed algorithm is also proved. For computational purposes, different procedures that accelerate the convergence of the proposed algorithm are analysed. The second method is based on piecewise linear approximations of the constraint functions. When the constraints are convex, the problem is reduced to global concave minimization subject to linear constraints. In the case of non-convex constraints, we use zero-one integer variables to linearize the constraints. The number of integer variables depends only on the concave parts of the constraint functions.Parts of the present paper were prepared while the second author was visiting Georgia Tech and the University of Florida.  相似文献   

9.
A new algorithm, the dual active set algorithm, is presented for solving a minimization problem with equality constraints and bounds on the variables. The algorithm identifies the active bound constraints by maximizing an unconstrained dual function in a finite number of iterations. Convergence of the method is established, and it is applied to convex quadratic programming. In its implementable form, the algorithm is combined with the proximal point method. A computational study of large-scale quadratic network problems compares the algorithm to a coordinate ascent method and to conjugate gradient methods for the dual problem. This study shows that combining the new algorithm with the nonlinear conjugate gradient method is particularly effective on difficult network problems from the literature.  相似文献   

10.
We present an algorithm for finding approximate global solutions to quadratically constrained quadratic programming problems. The method is based on outer approximation (linearization) and branch and bound with linear programming subproblems. When the feasible set is non-convex, the infinite process can be terminated with an approximate (possibly infeasible) optimal solution. We provide error bounds that can be used to ensure stopping within a prespecified feasibility tolerance. A numerical example illustrates the procedure. Computational experiments with an implementation of the procedure are reported on bilinearly constrained test problems with up to sixteen decision variables and eight constraints.This research was supported in part by National Science Foundation Grant DDM-91-14489.  相似文献   

11.
In this article we present a new finite algorithm for globally minimizing a concave function over a compact polyhedron. The algorithm combines a branch and bound search with a new process called neighbor generation. It is guaranteed to find an exact, extreme point optimal solution, does not require the objective function to be separable or even analytically defined, requires no nonlinear computations, and requires no determinations of convex envelopes or underestimating functions. Linear programs are solved in the branch and bound search which do not grow in size and differ from one another in only one column of data. Some preliminary computational experience is also presented.  相似文献   

12.
A mathematical model of the annoyance created at an airport by aircraft operations is developed. The model incorporates population distribution considerations around an airport and the annoyance caused by aircraft noise. The objective function of this model corresponds to seeking to minimize total population annoyance created by all aircraft operations in a 24-hour period. Several factors are included in this model as constraint relationships. Aircraft operations by type and time period are upper bounded. Demand for flight services is incorporated by including lower bounds on the number of operations by type of aircraft, runway used and time period. Also upper bounds on the number of operations for each runway are included. The mathematical model as formulated is recognized as corresponding to a nonlinear integer mathematical programming problem.The solution technique selected makes use of a successive linear approximation optimization algorithm. An especially attractive feature of this solution algorithm is that it is capable of obtaining solutions to large problems. For example, it would be feasible to attempt the solution of problems involving several thousand variables and over 500 linear constraints. This suggested solution algorithm was implemented on a computer and computational results obtained for example problems.  相似文献   

13.
本文对线性约束不可分离凸背包问题给出了一种精确算法.该算法是拉格朗日分解和区域分割结合起来的一种分枝定界算法.利用拉格朗日分解方法可以得到每个子问题的一个可行解,一个不可行解,一个下界和一个上界.区域分割可以把一个整数箱子分割成几个互不相交的整数子箱子的并集,每个整数子箱子对应一个子问题.通过区域分割可以逐步减小对偶间隙并最终经过有限步迭代找到原问题的最优解.数值结果表明该算法对不可分离凸背包问题是有效的.  相似文献   

14.
This paper addresses capacity planning in manufacturing and computer networks. More specifically, given a manufacturing or computer system modeled as a network of queues, we consider the minimum cost selection of capacity levels from a discrete set of choices such that a single system performance constraint is satisfied. We focus on settings where the cost of obtaining capacity is a concave function, allowing fixed charges and economies of scale to be handled. To solve this class of capacity planning problems, we present a branch and bound algorithm that globally minimizes a concave cost function over a single convex nonlinear performance constraint and lower and upper bounds on the discrete capacity variables. We also present reoptimization procedures that allow the subproblems to be solved more efficiently. Computational results with the algorithm are reported.  相似文献   

15.
Many real applications can be formulated as nonlinear minimization problems with a single linear equality constraint and box constraints. We are interested in solving problems where the number of variables is so huge that basic operations, such as the evaluation of the objective function or the updating of its gradient, are very time consuming. Thus, for the considered class of problems (including dense quadratic programs), traditional optimization methods cannot be applied directly. In this paper, we define a decomposition algorithm model which employs, at each iteration, a descent search direction selected among a suitable set of sparse feasible directions. The algorithm is characterized by an acceptance rule of the updated point which on the one hand permits to choose the variables to be modified with a certain degree of freedom and on the other hand does not require the exact solution of any subproblem. The global convergence of the algorithm model is proved by assuming that the objective function is continuously differentiable and that the points of the level set have at least one component strictly between the lower and upper bounds. Numerical results on large-scale quadratic problems arising in the training of support vector machines show the effectiveness of an implemented decomposition scheme derived from the general algorithm model.  相似文献   

16.
Fast construction of constant bound functions for sparse polynomials   总被引:1,自引:0,他引:1  
A new method for the representation and computation of Bernstein coefficients of multivariate polynomials is presented. It is known that the coefficients of the Bernstein expansion of a given polynomial over a specified box of interest tightly bound the range of the polynomial over the box. The traditional approach requires that all Bernstein coefficients are computed, and their number is often very large for polynomials with moderately-many variables. The new technique detailed represents the coefficients implicitly and uses lazy evaluation so as to render the approach practical for many types of non-trivial sparse polynomials typically encountered in global optimization problems; the computational complexity becomes nearly linear with respect to the number of terms in the polynomial, instead of exponential with respect to the number of variables. These range-enclosing coefficients can be employed in a branch-and-bound framework for solving constrained global optimization problems involving polynomial functions, either as constant bounds used for box selection, or to construct affine underestimating bound functions. If such functions are used to construct relaxations for a global optimization problem, then sub-problems over boxes can be reduced to linear programming problems, which are easier to solve. Some numerical examples are presented and the software used is briefly introduced.  相似文献   

17.
In this paper, a branch and bound approach is proposed for global optimization problem (P) of the sum of generalized polynomial fractional functions under generalized polynomial constraints, which arises in various practical problems. Due to its intrinsic difficulty, less work has been devoted to globally solving this problem. By utilizing an equivalent problem and some linear underestimating approximations, a linear relaxation programming problem of the equivalent form is obtained. Consequently, the initial non-convex nonlinear problem (P) is reduced to a sequence of linear programming problems through successively refining the feasible region of linear relaxation problem. The proposed algorithm is convergent to the global minimum of the primal problem by means of the solutions to a series of linear programming problems. Numerical results show that the proposed algorithm is feasible and can successfully be used to solve the present problem (P).  相似文献   

18.
The approximation of the convex envelope of nonconvex functions is an essential part in deterministic global optimization techniques (Floudas in Deterministic Global Optimization: Theory, Methods and Application, 2000). Current convex underestimation algorithms for multilinear terms, based on arithmetic intervals or recursive arithmetic intervals (Hamed in Calculation of bounds on variables and underestimating convex functions for nonconvex functions, 1991; Maranas and Floudas in J Global Optim 7:143–182, (1995); Ryoo and Sahinidis in J Global Optim 19:403–424, (2001)), introduce a large number of linear cuts. Meyer and Floudas (Trilinear monomials with positive or negative domains: Facets of convex and concave envelopes, pp. 327–352, (2003); J Global Optim 29:125–155, (2004)), introduced the complete set of explicit facets for the convex and concave envelopes of trilinear monomials with general bounds. This study proposes a novel method to underestimate posynomial functions of strictly positive variables.  相似文献   

19.
The subject of this article is a class of global optimization problems, in which the variables can be divided into two groups such that, in each group, the functions involved have the same structure (e.g. linear, convex or concave, etc.). Based on the decomposition idea of Benders (Ref. 1), a corresponding master problem is defined on the space of one of the two groups of variables. The objective function of this master problem is in fact the optimal value function of a nonlinear parametric optimization problem. To solve the resulting master problem, a branch-and-bound scheme is proposed, in which the estimation of the lower bounds is performed by applying the well-known weak duality theorem in Lagrange duality. The results of this article concentrate on two subjects: investigating the convergence of the general algorithm and solving dual problems of some special classes of nonconvex optimization problems. Based on results in sensitivity and stability theory and in parametric optimization, conditions for the convergence are established by investigating the so-called dual properness property and the upper semicontinuity of the objective function of the master problem. The general algorithm is then discussed in detail for some nonconvex problems including concave minimization problems with a special structure, general quadratic problems, optimization problems on the efficient set, and linear multiplicative programming problems.  相似文献   

20.
针对非凸区域上的凸函数比式和问题,给出一种求其全局最优解的确定性方法.该方法基于分支定界框架.首先通过引入变量,将原问题等价转化为d.c.规划问题,然后利用次梯度和凸包络构造松弛线性规划问题,从而将关键的估计下界问题转化为一系列线性规划问题,这些线性规划易于求解而且规模不变,更容易编程实现和应用到实际中;分支采用单纯形对分不但保证其穷举性,而且使得线性规划规模更小.理论分析和数值实验表明所提出的算法可行有效.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号