首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Absolute bond dissociation energies of serine (Ser) and threonine (Thr) to alkali metal cations are determined experimentally by threshold collision-induced dissociation of M+AA complexes, where M+=Li+, Na+, and K+ and AA=Ser and Thr, with xenon in a guided ion beam tandem mass spectrometer. Experimental results show that the binding energies of both amino acids to the alkali metal cations are very similar to one another and follow the order of Li+>Na+>K+. Quantum chemical calculations at three different levels, B3LYP, B3P86, and MP2(full), using the 6-311+G(2d,2p) basis set with geometries and zero-point energies calculated at the B3LYP/6-311+G(d,p) level show good agreement with the experimental bond energies. Theoretical calculations show that all M+AA complexes have charge-solvated structures (nonzwitterionic) with [CO, N, O] tridentate coordination.  相似文献   

2.
Experimental measurements of thermal depolarization in crystals of CaF2, grown from the melt containing LiF, NaF, KF, or RbF, reveal a common relaxation (designated M2) with an activation energy of 0.51 eV. In addition, the Li+- and K+-doped crystals exhibit a relaxation (M1) with an activation energy of 0.34eV. A similar relaxation has been found in CaF2:Rb+ by J. Fontanella private communication) and in CaF2:Na+ by R. D. Shelley and G. R. Miller (J. Solid State Chem., 1, 218, 1970). Theoretical calculations on M+-doped CaF2 (where M = Li,Na,K,Rb) are in agreement with the hypothesis that the M2 relaxation is due to Na+ in all four systems studied and is associated with the jump of a nearest-neighbor (nn) anion vacancy (Fv?) around the substitutional Na+ ion (Nas+). The assignment of M1 is less certain, but it appears to be associated with similar Lis+&.z.sbnd;Fv? dipoles resulting from Li+ impurity present because of the lower volatility of LiF compared to that of KF and RbF. When LiF dissolves in CaF2 the Li+ ion also forms quadrupoles consisting of a cation vacancy and two Li+ interstitials and the reorientation of these quadrupoles has also been studied theoretically.  相似文献   

3.
Direct current (DC) slice imaging of state-selected ions is combined with high-level ab initio calculations to give insight into reaction pathways, dynamics, and energetics for ethylamine cation photodissociation at 233 nm. These reaction pathways are of interest for understanding the rich chemistry of Titan's ionosphere recently revealed by the Cassini mission. The result for the H-loss product has a bimodal translational energy distribution, indicating two distinct H-loss pathways: these are assigned to triplet CH(3)CH(2)NH(+) product ions and the singlet CH(3)CHNH(2)(+) species. The distribution shows a modest fraction of energy available in translation and is consistent with barrierless dissociation from the ground state. HCNH(+) formation is observed as the dominant channel and exhibits a bimodal translational energy distribution with the faster component depicting a significant angular anisotropy. This suggests a direct excited-state decay pathway for this portion of the distribution. We have also observed the H + H(2) loss product as a minor secondary dissociation channel, which correlates well with the formation of CH(2)CNH(2)(+) ion with an exit barrier.  相似文献   

4.
Absolute bond dissociation energies (BDEs) of glycylglycine (GG) and glycylglycylglycine (GGG) to sodium and potassium cations and sequential bond energies of glycine (G) in Na+G2 were determined experimentally by threshold collision-induced dissociation (TCID) in a guided ion beam tandem mass spectrometer. Experimental results showed that the binding energies follow the order of Na+ > K+ and M+GGG > M+GG > M+G. Theoretical calculations at the B3LYP/6-311+G(d) level show that all complexes had charge-solvated structures (nonzwitterionic) with either [CO,CO] bidentate or [N,CO,CO] tridentate coordination for M+GG complexes, [CO,CO,CO] tridentate or [N,CO,CO,CO] tetradentate coordination for M+GGG complexes, and [N,CO,N,CO] tetradentate coordination for Na+G2. Ab initio calculations at three different levels of theory (B3LYP, B3P86, and MP2(full) using the 6-311+G(2d,2p) basis set with geometries and zero-point energies calculated at the B3LYP/6-311+G(d) level) show good agreement with the experimental bond energies. This study demonstrates for the first time that TCID measurements of absolute BDEs can be successfully extended to biological molecules as complex as a tripeptide.  相似文献   

5.
The cyclization of functionalized aminophosphonates is studied on both experimental and theoretical grounds. In a recently described route to phosphono-beta-lactams [Stevens C. V.; Vekemans, W.; Moonen, K.; Rammeloo, T. Tetrahedron Lett. 2003, 44, 1619], it was found that starting from an ambident allylic anion only four-membered rings were formed without any trace of six-membered lactams. New anion trapping experiments revealed that the gamma-anion is highly reactive in intermolecular reactions. Ab initio calculations predict higher reaction barriers for the gamma-anion due to restricted rotation about the C-N bond and due to highly strained transition states during ring closure. The sodium or lithium counterion, explicit dimethyl ether solvent molecules, and bulk solvent effects were properly taken into account at various levels of theory.  相似文献   

6.
A method for sulfonation of poly(naphthoylenebenzimidazole) with oleum–sulfuric acid mixture to produce sulfonated poly(naphthoylenebenzimidazole)s (SPNBIs) with different content of–SO3H groups has been developed. SPNBIs containing ≥5% sulfur are soluble in NMP and form stable solutions. It has been revealed that viscosity of SPNBI solutions in NMP increases on decreasing concentration when the content of polar sulfonic groups enhances with sulfonation degree of the initial polymer. Thus, SPNBI shows the polyelectrolyte effect. The substitution of hydrogen atoms in sulfonic groups by an alkali metal ion, potassium, has been conducted by the treatment of SPNBI powders with 5 M KOH aqueous solution under heterogeneous conditions. Potassium salts of SPNBI are insoluble in NMP. The introduction of potassium ions into SPNBI leads to the preparation of ionomers with a thermal stability higher than that of the initial PNBI.  相似文献   

7.
Pressure retarded osmosis (PRO) was investigated as a viable source of renewable energy. In PRO, water from a low salinity feed solution permeates through a membrane into a pressurized, high salinity draw solution; power is obtained by depressurizing the permeate through a hydroturbine. A PRO model was developed to predict water flux and power density under specific experimental conditions. The model relies on experimental determination of the membrane water permeability coefficient (A), the membrane salt permeability coefficient (B), and the solute resistivity (K). A and B were determined under reverse osmosis conditions, while K was determined under forward osmosis (FO) conditions. The model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to the lack of suitable membranes and membrane modules. In this investigation, the use of a custom-made laboratory-scale membrane module enabled the collection of experimental PRO data. Results obtained with a flat-sheet cellulose triacetate (CTA) FO membrane and NaCl feed and draw solutions closely matched model predictions. Maximum power densities of 2.7 and 5.1 W/m2 were observed for 35 and 60 g/L NaCl draw solutions, respectively, at 970 kPa of hydraulic pressure. Power density was substantially reduced due to internal concentration polarization in the asymmetric CTA membranes and, to a lesser degree, to salt passage. External concentration polarization was found to exhibit a relatively small effect on reducing the osmotic pressure driving force. Using the predictive PRO model, optimal membrane characteristics and module configuration can be determined in order to design a system specifically tailored for PRO processes.  相似文献   

8.
Experimental and theoretical studies are carried out to determine the influence of thioketo substitution on the properties of uracil and its noncovalent interactions with alkali metal ions. Bond dissociation energies of alkali metal ion-thiouracil complexes, M(+)(SU), are determined using threshold collision-induced dissociation techniques in a guided ion beam mass spectrometer, where M(+) = Li(+), Na(+), and K(+) and SU = 2-thiouracil, 4-thiouracil, 2,4-dithiouracil, 5-methyl-2-thiouracil, and 6-methyl-2-thiouracil. Ab initio electronic structure calculations are performed to determine the structures and theoretical bond dissociation energies of these complexes and provide molecular constants necessary for thermodynamic analysis of the experimental data. Theoretical calculations are also performed to examine the influence of thioketo substitution on the acidities, proton affinities, and A::SU Watson-Crick base pairing energies. In general, thioketo substitution leads to an increase in both the proton affinity and the acidity of uracil. 2-Thio substitution generally results in an increase in the alkali metal ion binding affinities but has almost no affect on the stability of the A::SU base pair. In contrast, 4-thio substitution results in a decrease in the alkali metal ion binding affinities and a significant decrease in the stability of the A::SU base pair. In addition, alkali metal ion binding is expected to lead to an increase in the stability of both single-stranded and double-stranded nucleic acids by reducing the charge on the nucleic acid in a zwitterion effect as well as through additional noncovalent interactions between the alkali metal ion and the nucleobases.  相似文献   

9.
Theoretical and experimental 2JHH coupling constants for six-membered rings containing oxygen or sulfur atoms were studied to investigate whether the 2JHH coupling constant can be used for stereoelectronic studies in heterocyclohexanes, instead of 1JCH, because it is well known that experimental measurements of 2JHH coupling constants at low temperature are much easier to determine than the corresponding 1JCH couplings. For all compounds studied here, the 2JHH coupling constants are affected by sigma*C-H antibonding occupancy together with bond angle effects. For cyclohexane and oxygen-containing compounds, the influence on the geminal coupling for Hax-C2-Heq and for X1-C2-X3 (X=O and C), bond angles are more pronounced than for the sulfur derivatives.  相似文献   

10.
The influence of halogenation on the properties of uracil and its noncovalent interactions with alkali metal ions is investigated both experimentally and theoretically. Bond dissociation energies of alkali metal ion-halouracil complexes, M+(XU), are determined using threshold collision-induced dissociation techniques in a guided ion beam mass spectrometer, where M+ = Li+, Na+, and K+ and XU = 5-fluorouracil, 5-chlorouracil, 6-chlorouracil, 5-bromouracil, and 5-iodouracil. The structures and theoretical bond dissociation energies of these complexes are determined from ab initio calculations. Theoretical calculations are also performed to examine the influence of halogenation on the acidities, proton affinities, and Watson-Crick base pairing energies. Halogenation of uracil is found to produce a decrease in the proton affinity, an increase in the alkali metal ion binding affinities, an increase in the acidity, and stabilization of the A::U base pair. In addition, alkali metal ion binding is expected to lead to an increase in the stability of nucleic acids by reducing the charge on the nucleic acid in a zwitterion effect as well as through additional noncovalent interactions between the alkali metal ion and the nucleobases.  相似文献   

11.
12.
The adsorption of small amounts of alkali metal atoms (Li, Na, K, Rb, and Cs) on the surface of MgO powders and thin films has been studied by means of EPR spectroscopy and DFT calculations. From a comparison of the measured and computed g values and hyperfine coupling constants (hfccs), a tentative assignment of the preferred adsorption sites is proposed. All atoms bind preferentially to surface oxide anions, but the location of these anions differs as a function of the deposition temperature and alkali metal. Lithium forms relatively strong bonds with MgO and can be stabilized at low temperatures on terrace sites. Potassium interacts very weakly with MgO and is stabilized only at specific sites, such as at reverse corners where it can interact simultaneously with three surface oxygen atoms (rubidium and cesium presumably behave in the same way). Sodium forms bonds of intermediate strength and could, in principle, populate more than a single site when deposited at room temperature. In all cases, large deviations of the hfccs from the gas-phase values are observed. These reductions in the hfccs are due to polarization effects and are not connected to ionization of the alkali metal, which would lead to the formation of an adsorbed cation and a trapped electron. In this respect, hydrogen atoms behave completely differently. Under similar conditions, they form (H(+))(e(-)) pairs. The reasons for this different behavior are discussed.  相似文献   

13.
14.
Silylboranes with aromatic substituents linked to boron and silicon exhibit an unexpected absorption band in the UV-Vis spectral region. When polar groups were introduced, a marked solvatochromic effect was observed in their fluorescence emission spectra, revealing a strong excited state dipole moment. Semi-empirical MNDO/d and AM1 calculations showed that, upon UV excitation, the polarity of the Si-B bond increased and the aromatic π-electrons migrated toward the Si-B bond, consistent with experimental observations.  相似文献   

15.
Aromatic radicals form in a variety of reacting gas-phase systems, where their molecular weight growth reactions with unsaturated hydrocarbons are of considerable importance. We have investigated the ion-molecule reaction of the aromatic distonic N-methyl-pyridinium-4-yl (NMP) radical cation with 2-butyne (CH(3)C≡CCH(3)) using ion trap mass spectrometry. Comparison is made to high-level ab initio energy surfaces for the reaction of NMP and for the neutral phenyl radical system. The NMP radical cation reacts rapidly with 2-butyne at ambient temperature, due to the apparent absence of any barrier. The activated vinyl radical adduct predominantly dissociates via loss of a H atom, with lesser amounts of CH(3) loss. High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry allows us to identify small quantities of the collisionally deactivated reaction adduct. Statistical reaction rate theory calculations (master equation/RRKM theory) on the NMP+2-butyne system support our experimental findings, and indicate a mechanism that predominantly involves an allylic resonance-stabilized radical formed via H atom shuttling between the aromatic ring and the C(4) side-chain, followed by cyclization and/or low-energy H atom β-scission reactions. A similar mechanism is demonstrated for the neutral phenyl radical (Ph˙)+2-butyne reaction, forming products that include 3-methylindene. The collisionally deactivated reaction adduct is predicted to be quenched in the form of a resonance-stabilized methylphenylallyl radical. Experiments using a 2,5-dichloro substituted methyl-pyridiniumyl radical cation revealed that in this case CH(3) loss from the 2-butyne adduct is favoured over H atom loss, verifying the key role of ortho H atoms, and the shuttling mechanism, in the reactions of aromatic radicals with alkynes. As well as being useful phenyl radical analogues, pyridiniumyl radical cations may form in the ionosphere of Titan, where they could undergo rapid molecular weight growth reactions to yield polycyclic aromatic nitrogen hydrocarbons (PANHs).  相似文献   

16.
We report on an H(D)-atom Rydberg tagging experiment for H(D)N(3) photolysis providing detailed dynamical information on the wavelength dependence of the H(D) + N(3) channel. We observe subtle yet striking changes in the photochemical dynamics as the photolysis energy passes through approximately 5.6 eV. In addition to producing linear azide with an average of approximately 40% of available energy appearing as translation, a second H(D)-atom producing channel grows in above this energy releasing only about 15%. An observed (inverse) isotope effect suggests that statistical decomposition on S(0) is unimportant. High level ab initio quantum chemical calculations reveal a transition state to cyclization of the N(3) moiety in H(D)N(3) on the first excited singlet (S(1)) surface that is close in energy to the experimentally observed threshold energy for this "slow channel". Furthermore, the translational energy release of the "slow channel" is energetically consistent with cyclic-N(3) formation. This work provides the clearest presently available insights into how ring closure can occur in azide photochemistry.  相似文献   

17.
The optical rotatory dispersion (ORD) and circular dichroism of the conformationally flexible carvone molecule has been investigated in 17 solvents and compared with results from calculations for the "free" (gas phase) molecule. The G3 method was used to determine the relative energies of the six conformers. The optical rotation of (R)-(-)-carvone at 589 nm was calculated using coupled cluster and density functional methods, including temperature-dependent vibrational corrections. Vibrational corrections are significant and are primarily associated with normal modes involving the stereogenic carbon atom and the carbonyl group, whose n → π? excitation plays a significant role in the chiroptical response of carvone. Without the inclusion of vibrational corrections the optical rotation calculated with CCSD and DFT has the opposite sign of experimental data. Calculations of optical rotation performed in solution using the polarizable continuum model were also opposite in sign when compared to that of the experiment.  相似文献   

18.
19.
20.

Abstract  

From extraction experiments in the two-phase water/nitrobenzene system and γ-activity measurements, the stability constant of the beauvericin·Na+ complex species dissolved in nitrobenzene saturated with water was determined. By using quantum mechanical density functional level of theory (DFT) calculations, the most probable structure of this complex species was derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号