首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular tissue characterisation with IVUS elastography   总被引:1,自引:0,他引:1  
Knowledge about the mechanical properties of the vessel wall and plaque is important for guiding intravascular interventional procedures and detection of plaque vulnerability. Rupture of atherosclerotic plaques is associated with acute myocardial infarction and unstable angina pectoris. In a plaque with a lipid core, the stress due to the arterial pulsation will be concentrated in the cap and a thin cap may be unable to bear this stress. In this study, the potential of intravascular elastography to characterise fibrous, fibro-fatty and fatty tissue based on their mechanical properties was investigated. Using a custom-made set-up, intravascular echograms and elastograms of excised human femoral arteries were determined. High frequency r.f. data (30 MHz) were acquired using an intravascular catheter. The tissue was compressed using intravascular pressures of 80 and 100 mmHg. The cross-sections of interest were marked with a needle for matching with histology. Using cross-correlation estimation of gated echosignals, elastograms (images of the local strain) were determined. After the intravascular experiments, the specimens were fixed in formaldehyde and processed for paraffin embedding. Sections were stained with picrosirius red and alpha-actin to counterstain collagen and smooth muscle cells (SMC), respectively. Results of vessel cross-sections with fibrous and fatty plaque regions will be presented. The elastograms of these specimens show that the strain in fatty tissue is higher than the strain in fibrous material. In conclusion, these in vitro experiments on human femoral arteries indicate the potential of intravascular elastography to characterise different plaque components.  相似文献   

2.
We demonstrate intravascular photoacoustic imaging of human coronary atherosclerotic plaque. The data was obtained from two fresh human coronary arteries ex vivo, showing different stages of disease. A 1.25?mm diameter intravascular imaging catheter was built, comprising an angle-polished optical fiber adjacent to a 30?MHz ultrasound transducer. Specific photoacoustic imaging of lipid content, a key factor in vulnerable plaques that may lead to myocardial infarction, is achieved by spectroscopic imaging at different wavelengths between 1180 and 1230?nm. Simultaneous imaging with intravascular ultrasound was performed.  相似文献   

3.
Saijo Y  Tanaka A  Owada N  Akino Y  Nitta S 《Ultrasonics》2004,42(1-9):753-757
Intravascular ultrasound (IVUS) provides not only the dimensions of coronary artery but the information of tissue components. In catheterization laboratory, soft and hard plaques are classified by visual inspection of echo intensity. So-called soft plaque contains lipid core or thrombus and it is believed to be more vulnerable than a hard plaque. However, it is not simple to analyze the echo signals quantitatively. When we look at a reflection signal, the intensity is affected by the distance of the object, the medium between transducer and objects and the fluctuation caused by rotation of IVUS probe. The time of flight is also affected by the sound speed of the medium and Doppler shift caused by tissue motion but usually those can be neglected. Thus, the analysis of RF signal in time domain can be more quantitative than intensity of RF signal. In the present study, a novel imaging technique called "intravascular tissue velocity imaging" was developed for searching a vulnerable plaque. Radio-frequency (RF) signal from a clinically used IVUS apparatus was digitized at 500 MSa/s and stored in a workstation. First, non-uniform rotation was corrected by maximizing the correlation coefficient of circumferential RF signal distribution in two consecutive frames. Then, the correlation and displacement were calculated by analyzing the radial difference of RF signal. Tissue velocity was determined by the displacement and the frame rate. The correlation image of normal and atherosclerotic coronary arteries clearly showed the internal and external borders of arterial wall. Soft plaque with low echo area in the intima showed high velocity while the calcified lesion showed the very low tissue velocity. This technique provides important information on tissue character of coronary artery.  相似文献   

4.
BACKGROUND AND GOAL: More than 60% of all myocardial infarction is caused by rupture of a vulnerable plaque. A vulnerable plaque can be described as a large, soft lipid pool covered by a thin fibrous cap. Plaque material composition, geometry, and inflammation caused by infiltration of macrophages are considered as major determinants for plaque rupture. For diagnostic purposes, these determinants may be obtained from elastograms (i.e. radial strain images), which are derived from intravascular ultrasound (IVUS) measurements. IVUS elastograms, however, cannot be interpreted directly as tissue component images, because radial strain depends upon plaque geometry, plaque material properties, and used catheter position. To understand and quantify the influence of these parameters upon measured IVUS elastograms, they were varied in a finite element model (FEM) that simulates IVUS elastograms of vulnerable plaques. MATERIALS AND METHODS: IVUS elastography measurements were performed on a vessel mimicking phantom, with a soft plaque embedded in a hard wall, and an atherosclerotic human coronary artery containing a vulnerable plaque. Next, FEMs were created to simulate IVUS elastograms of the same objects. In these FEMs the following parameters were varied: Young's modulus (E), Poisson's ratio (nu) in range 0.49-0.4999, catheter position (translation of 0.8 mm), and cap thickness (t) in range 50-350 microm. Hereby the resulting peak radial strain (PRS) was determined and visualized. RESULTS: Measured static E for phantom was 4.2 kPa for plaque and 16.8 kPa for wall.Variation of E-wall in range 8.4-33.2 kPa and/or E-plaque in range 2.1-8.4 kPa using the phantom FEM, gave a PRS variation of 1.6%, i.e. from 1.7% up to almost 3.3%; for variation in nu this was only 0.07%, i.e. from 2.37% up to 2.44%. Variation of E-lipid in range 6.25-400 kPa and E-cap in range 700-2300 kPa using the artery FEM, gave a PRS variation of 3.1%, i.e. from 0.6% up to 3.7%. The PRS was higher for lower E-lipid and E-cap; it was located at a shoulder of the lipid pool. Variation of nu gave only a variation of 0.17%. Variation of t and E-cap resulted in a PRS variation of 1.4%, i.e. from 0.3% up to 1.7%; thinner and weaker caps gave higher PRS. Catheter position variation changed radial strain value. CONCLUSIONS: Measured IVUS elastograms of vulnerable plaques depend highly upon the Young's modulus of lipid and cap, but not upon the Poisson's ratio. Different catheter positions result in different IVUS elastograms, but the diagnostically important high strain regions at the lipid shoulders are often still detectable. PRS increases when cap weakens or cap thickness decreases.  相似文献   

5.
Intravascular ultrasound elastography: an overview   总被引:10,自引:0,他引:10  
The composition and morphology of the atherosclerotic lesion are currently considered more important determinants of acute coronary ischemic syndromes than the degree of stenosis. When a lesion is unstable, it may rupture and cause an acute thrombotic reaction. A rupture prone plaque contains a large lipid pool covered by a thin fibrous cap. The stress in the cap increased with decreasing thickness. Additionally, it may be weakened by macrophage infiltration. Intravascular ultrasound elastography might be an ideal technique to assess the presence of lipid pools and identify high stress regions. Elastography is a technique to assess local mechanical properties of tissue. The underlying principle is that the deformation of tissue by a mechanical excitation is a function of its mechanical properties. The deformation of the tissue is determined using ultrasound. For intravascular purposes, the intraluminal pressure is used as the excitation force. The radial strain in the tissue is obtained by cross-correlation techniques on the radio frequency (rf) signal. The strain is colour-coded and plotted as a complimentary image to the IVUS echogram. Elastography was validated in vitro using diseased human coronary and femoral arteries. After the ultrasound experiments, the specimens were processed for routine histology to counterstain collagen, smooth-muscle cells, and macrophage activity. Regions were segmented in the elastograms based on their strain values. Next, the dominant plaque type (fibrous, fibro-fatty or fatty) was defined by observers blinded to the elastographic result. These experiments demonstrate that the strain in the three plaque types is different (Kruskall-Wallis p < 0.001). Especially between fibrous and fatty tissue, a highly significant difference (Wilcoxon p < 0.001) was found. In vivo, the technique is validated in an atherosclerotic Yucatan mini-pig animal model. High-resolution echo frames (30 frames per second) were acquired near end-diastole. In this phase of the pressure cycle, catheter motion was minimal. Frames with a pressure difference of approx. 5 mm Hg were taken to determine the elastograms. This in vivo validation study in Yucatan mini-pigs revealed higher strain values in fatty material (ANOVA p < 0.001). All cross-sections with a fatty plaque were identified with the elastogram by the presence of high strain values. Additionally, data are acquired in patients referred for Percutaneous Transluminal Coronary Angioplasty with the same set-up as tested in the animal study. Ultrasound data of soft, fibrous, calcified and stented plaques are acquired near end-diastole. The elastogram of soft plaques. as identified from the deformation during the pressure cycle, reveals strain values of 1% with increased strain up to 2% at the shoulders of the plaque. Calcified material, as identified from the echogram, shows low strain values of 0-0.2%. The elastogram of stented plaques reveals very low strain values, except for two regions: these are between the stent struts and at the shoulders of the plaque. In conclusion, intravascular elastography appears to be a unique tool to determine local mechanical properties in atherosclerotic lesions to identify fibrous and fatty tissue. Experiments have demonstrated the feasibility of this technique to be applied in vivo.  相似文献   

6.
Li J  Hua TC  Gu XL  Ding Y  Luo M  Xiao HH  Wu ZJ  Meng LR  Gao QR  Chen J 《Cryo letters》2005,26(3):193-200
The research on haematopoietic stem cells of human cord blood has become more important recently. At present, cord blood is mainly preserved at ultra-low temperatures. In the former study, we compared the effects of preserving mononuclear cells (MNC) and whole human cord blood by freeze-drying. This time, a further study was conducted on freeze-drying mononuclear cells. Samples in the presence of PVP, sucrose, mannitol and FBS were firstly frozen to -38 degrees C. Afterwards, they were vacuum-dried at a selected shelf temperature of -30 degrees C for the main drying stage, and then vacuum-dried at 15 degrees C for the second drying stage. The entire time of freeze-drying process was 41 hours. Samples were stored at room temperature for 7 days prior to evaluation. Subsequently, the dried samples were resuspended in an isotonic phosphate-buffered saline solution. The residual moisture content was 6.5 +/- 0.87%. The recovery of the cells was tested by a haemacytometer, and the numerical cell count recovery of rehydrated MNC increased by 8%. Morphology of the fresh and rehydrated MNC was analyzed respectively using standard light microscopy, scanning electron microscope and transmission electron microscope. The results showed that karyons changed and cytoplasm decreased after rehydration, but it is still unknown that whether these changes will influence the proliferative ability of the stem cells.  相似文献   

7.
Gujjari P  Muldrow T  Zhou JJ 《Cryo letters》2010,31(3):261-267
Eight cryopreservation protocols were assessed for their effects on the viability and phenotypic stability of the yeast Saccharomyces cerevisiae during a five-year study. It is found that viability and phenotypic features have remained largely unchanged when the yeast was preserved in glycerol, dimethyl sulphoxide, or sucrose at -80 degrees C or in liquid nitrogen. When sorbitol was used as a cryoprotectant, yeast cells frozen and stored at -80 degrees C manifested great decreases in viability after six months in storage and concomitantly large fluctuations in the rate of the trpl auxotrophic reversion. This phenotypic reversion was stable passage after passage. Such a degree of phenotypic fluctuations, however, was not observed for yeast cells preserved in the same sorbitol solution that went through a controlled freezing program and were subsequently stored in liquid nitrogen. These results indicate that some combinations of cryoprotective agent, freezing program, and storage temperature disturb biomaterials more profoundly during cryopreservation and imply a genetic basis of this phenotypic change.  相似文献   

8.
We have measured detailed ultrasonic velocity changes in a nickel single crystal as a function of magnetic field in the frequency range 10 to 150 MHz at room temperature. Qualitatively the velocity changes follow the attenuation changes. The magnitudes of the velocity differences between the demagnetized and the fully magnetized states decrease slowly with the increase of frequency, and the decrease is slower than predicted by Mason's theory. Both velocity and attenuation, measured at 10 MHz, show similar behaviour in the temperature range 23 to 300°C.  相似文献   

9.
近红外光谱检测鲜枣酵母菌的动力学模型   总被引:1,自引:0,他引:1  
酵母菌是引起鲜枣发酵的主要微生物。以室温(20 ℃)贮藏的鲜枣为研究对象,应用近红外光谱,建立了检测鲜枣内酵母菌的动力学模型,从而预测室温贮藏鲜枣的保鲜期,以确保鲜枣的品质安全。通过对近红外光谱预处理方法和特征波数的优选,分别建立了室温贮藏下鲜枣内酵母菌的近红外光谱定量检测模型和反映其变化规律的动力学模型。结果表明,在全光谱范围内,采用多元散射校正光谱预处理方法,通过多元线性回归,建立的鲜枣内酵母菌菌落总数的近红外光谱模型预测效果最好,其中校正集的相关系数为0.950,均方根误差为2.560,预测集的相关系数为0.863,均方根误差为2.477。结合鲜枣的近红外光谱,其零级反应动力学模型可以较好地描述酵母菌的变化情况,鲜枣光谱吸光度值与贮藏时间的动力学模型为Bt=171.395-124.445x1-109.945x2-32.763x3-7.899x4-1.426x5-4.857x6+0.045t,其相关系数为0.996,标准偏差为2.561。酵母菌安全限量为100 000 cfu·g-1,当酵母菌菌落总数初始值小于等于10 cfu·g-1时,预测鲜枣在室温下的贮藏时间为8 d,也可根据鲜枣中的酵母菌菌落总数初始值的不同实现实时监测鲜枣内部酵母菌菌落总数信息及其安全的贮藏时间。  相似文献   

10.
In vitro ultrasonic heating of fetal bone   总被引:1,自引:0,他引:1  
The temperature increase measured in vitro in human fetal femurs exposed to 1 MHz, continuous wave ultrasound at 37 degrees C is reported. The temperature is measured with a thermocouple probe and is given for several gestational ages. The initial rate of the temperature increase in the specimens is evaluated and compared to known values of absorption in soft tissue. For example, the initial rate of temperature increase in the 108-day gestational age specimen resulting from exposure to ultrasound is 30 times greater in the fetal bone than that of soft tissue with an absorption coefficient of 0.05 cm-1.  相似文献   

11.
We have been developing a scanning acoustic microscope (SAM) system for medicine and biology featuring quantitative measurement of ultrasonic speed and attenuation of soft tissues. In the present study, we will propose a new concept ultrasonic speed microscopy that can measure the thickness and ultrasonic speed using fast Fourier transform of a single pulsed wave instead of continuous waves used in conventional SAM systems. Six coronary arteries were frozen and sectioned approximately 10 microm in thickness. They were mounted on glass slides without cover slips. The scanning time of a frame with 300 x 300 pixels was 121 s and two-dimensional distribution of ultrasonic speed was obtained. The ultrasonic speed was 1720 m/s in the thickened intima with collagen fiber, 1520 m/s in lipid deposition underlying fibrous cap and 1830 m/s in calcified lesion in the intima. These basic measurements will help understanding echogenecity in intravascular ultrasound (IVUS) images. Imaging of coronary artery with the ultrasonic speed microscopy provides important information for study of IVUS coronary imaging.  相似文献   

12.

Objective and motivation

Intravascular ultrasound (IVUS) allows in vivo invasive intra-luminal real-time examination of the arterial wall structure. In this study, we aimed to validate for the first time the in vivo IVUS performing as a diagnostic tool by comparison to the well-established histomorphometry approach, in the largely used rat model of carotid angioplasty model that mimics the angioplasty procedure in humans.

Methods

Atherosclerotic lesions were allowed to develop during four weeks after balloon catheter inflation of the left carotid artery, whereas the intact right carotid artery was used as control. Four weeks after injury, a Boston Scientific 40 MHz device to perform IVUS exams in vivo on both carotid arteries. Then, both carotid arteries were examined in vitro by histomorphometry and correlation between IVUS and histomorphometric parameters (plaque plus media cross-sectional areas [CSA] and eccentricity index) were researched.

Results

After ANOVA analysis, comparative statistical analysis showed significant correlations between IVUS and histomorphometry when examining the intact right carotid artery (r = 0.662 with p < 0.003 for plaque plus media CSA; r = 0.774 with p < 0.002 for eccentricity index), but also when exploring the injured left carotid artery (r = 0.805 with p < 0.0001 for plaque plus media CSA; r = 0.775 with p < 0.002 for eccentricity index).

Conclusions and outcome

We report here for the first time the ability of IVUS to study therapeutic vascular effects in vivo in alive rats. This result is of major importance since it will allow this device to be used for restenosis drug testing in rat model of carotid angioplasty.  相似文献   

13.
In paradise tree (Melia azedarach L.), immature zygotic embryos sampled from immature fruits are the starting material for the production of somatic embryos. These somatic embryos are employed for freezing experiments. Immature fruits could be stored at 25 degrees C for up to 80 days without impairing the embryogenic potential of zygotic embryos, which represents a four-fold increase in immature fruit storage duration, compared with previous studies. Among the three cryopreservation techniques tested for freezing paradise tree somatic embryos, namely desiccation, encapsulation-dehydration and pregrowth-dehydration, only encapsulation-dehydration and pregrowth-dehydration led to successful results. The optimal protocol was the following: i) somatic embryos (encapsulated or not) pretreated in liquid Murashige & Skoog medium with daily increasing sucrose concentration (0.5 M/0.75 M/1.0 M); ii) dehydrated with silica gel to 21 - 26% moisture content (fresh weight basis), for encapsulation-dehydration, or to 19% moisture content, for pregrowth-dehydration; iii) frozen at 1 degree C/min from 20 degrees C to -30 degrees C with a programmable freezing apparatus; iv) rapid immersion in liquid nitrogen. The highest recovery achieved was 36% with encapsulation-dehydration and 30% with pregrowth-dehydration. Regrowth of frozen embryos was direct in most cases, as secondary embryogenesis originating from the root pole was observed on only around 10% of cryopreserved somatic embryos. Plants recovered from cryopreserved embryos presented the same phenotypic traits as non-frozen control plants.  相似文献   

14.
Yu Q  Bao X  Chen L 《Optics letters》2004,29(1):17-19
We report a study of the temperature dependence of the Brillouin gain and loss for three different kinds of commercial polarization-maintaining fibers for the first time to our knowledge. The Brillouin frequency differences between the fast and slow axes are independent of the temperature, varying between 2.9 and 4.3 MHz. Using 2-ns pulses (equivalent to a spatial resolution of 20 cm), we find that the temperature coefficients for the relative Brillouin power at a wavelength of 1310 nm are 0.26%/degrees C (panda fiber), 0.23%/degrees C (bow-tie fiber), and 0.04%/degrees C (tiger fiber); the temperature coefficients for the Brillouin frequency are 1.37 MHz/degrees C (panda), 1.66 MHz/degrees C (tiger), and 2.30 MHz/degrees C (bow-tie). The temperature coefficients for the Brillouin gain bandwidth are 0.15 MHz/degrees C (panda), 0.20 MHz/degrees C (bow-tie), and 0.22 MHz/degrees C (tiger).  相似文献   

15.
Previous reported data from our laboratory demonstrated the temperature dependence of propagation speed and attenuation of canine tissue in vitro at discrete temperatures ranging from 25 to 95 degrees C. However, concerns were raised regarding heating the same tissue specimen over the entire temperature range, a process that may introduce irreversible and, presumably, cumulative tissue degradation. In this paper propagation speed and attenuation vs temperature are measured using multiple groups of samples, each group heated to a different temperature. Sample thicknesses are measured directly using a technique that uses both transmitted and reflected ultrasound pulses. Results obtained using 3 and 5 MHz center frequencies demonstrate a propagation speed elevation of around 20 m/s in the 22-60 degrees C range, and a decrease of 15 m/s in the 60-90 degrees C range, in agreement with previous results where the same specimens were subjected to the entire temperature range. However, sound speed results reported here are slightly higher than those reported previously, probably due to more accurate measurements of sample thickness in the present experiments. Results also demonstrate that while the propagation speed varies with temperature, it is not a function of tissue coagulation. In contrast, the attenuation coefficient depends on both tissue coagulation effects and temperature elevation.  相似文献   

16.
Our goal is to achieve the precise quantitative imaging of tissue elasticity in clinical settings. In the present study, we measured basic ultrasonic characteristics of atherosclerosis by two-dimensional (2D) intravascular tissue velocity imaging. Radio-frequency (RF) signal from a clinically used IVUS apparatus was digitized at 500 MSa/s and stored in a workstation. First, the correlation coefficient between two consecutive frames was calculated in the rotational direction and the rotational disuniformity was corrected to obtain the maximum correlation coefficient. Then, the polar coordinate images were converted into rectangular coordinate images and the images were divided into 64 by 64 square shaped regions of interest (ROIs). The correlation and displacement of the ROIs between the consecutive two frames were calculated by template matching method. Two-dimensional tissue velocity was defined as the vectors of displacement of ROI with 0.7 and more correlation. IVUS studies were performed in directional coronary atherectomy (DCA) procedures. The specimens excised by DCA were stained with Elastica-Masson's trichrome staining and CD68 immunochemical staining. Eleven cases (including two no re-flow cases and one perforation case) were intraoperatively observed by IVUS and the specimens obtained by DCA were observed by optical microscopy. The specimen from homogeneous 2D strain was collagen dominant fibrosis and the specimen from a lesion with complex vectors contained CD68 positive cells and degenerated collagen fibers, which indicated the plaque was vulnerable.  相似文献   

17.
A series of experiments was carried out to validate a -150 degree C ultra-low temperature freezer for its possible use to properly freeze and store semen. In the first part, crude sample handling was simulated to see whether temperature of stored samples was maintained within a safe range; also, the freezing point and latent heat of fusion plateau of a semen extender were monitored. In the second part, buck semen was (i) frozen in liquid nitrogen and stored in the ultra-low freezer, (ii) frozen and stored in the ultra-low freezer, and (iii) frozen and stored in liquid nitrogen, to compare sperm cryosurvival between freezing methods. Both, frequent removal of samples and long opening of the freezer door did not negatively affect stored sample temperature; latent heat of fusion plateau was 5 minutes long. Semen stored either at -150 degree C or at -196 degree C cryosurvived similarly after 2 days and after 2 months of cryopreservation.  相似文献   

18.
Proton nuclear magnetic resonance relaxation times, T1 and T2, of water in unfixed gray and white matter from normal and edematous rabbit brain tissues were measured in vitro at 23°C and 100 MHz to evaluate the effects of the temperature (?25°C to 37°C) and duration (0 to 96 h) of tissue storage on relaxation times. T1 and T2 tended to decrease during storage, probably from slow dehydration of the tissue. This effect was greatest in tissues stored at 37°C and least in those stored at 4 and ?25°C; decreases in T1 and T2 were greater in white matter than in gray matter. Freezing brain tissue to ?25°C caused a sudden decrease in the T2 of normal white matter. Relaxation times were constant for 5 h in tissues stored at 23°C and for 40 h at 4°C. These results correlated well with corresponding tissue water loss.  相似文献   

19.
Recently, in vivo feasibility of tissue harmonic imaging with a mechanically rotated intravascular ultrasound (IVUS) catheter was experimentally demonstrated. To isolate the second harmonic signal content, a combination of pulse inversion and analog filtering was used. In this paper the development of a simulation tool to investigate nonlinear IVUS beams is reported, and the influence of transducer rotation and axial catheter-to-tissue motion on the efficiency of PI signal processing is evaluated. Nonlinear beams were simulated in homogeneous tissue-mimicking media at a transmit frequency of 20 MHz, which resulted in second harmonic pressure fields at 40 MHz. The competing effects of averaging and decorrelation between neighboring rf lines on the signal-to-noise ratio (SNR) were studied for a single point scatterer. An optimal SNR was achieved when lines were combined over 3 degrees - 3.75 degrees. When the transducer was rotated with respect to point scatterers, simulating the acoustic response of tissue, the fundamental frequency suppression using PI degraded rapidly with increasing interpulse angles. The effect of axial catheter-to-tissue motion on the efficiency of pulse inversion seemed to be of less influence for realistic motion values. The results of this study will aid in the optimization of harmonic IVUS imaging systems.  相似文献   

20.
Proton spin-lattice relaxation time and second moment of polycrystalline [4-NH2C5H4NH][SbCl4] have been determined at 160-400 K, at 90 and 25 MHz. The temperature dependence of the second moment indicates that the cation is in the "frozen" state over that temperature range, while at higher temperatures it oscillates at an angle of 135 degrees to the pseudo-six-fold axis of the aromatic ring. Weak influence of different phase transitions on the temperature dependences of relaxation times T1 and T1D can be explained in terms of molecular dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号