首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
提出一种基于遗传算法优化支持向量回归机的模型进行网格负载预测,使用遗传算法和交叉验证技术解决了支持向量回归机参数难以确定的问题.标准数据集仿真实验结果表明,该模型与试验法定参的支持向量回归机和BP神经网络相比具有更优的预测性能.  相似文献   

2.
为了提高网络流量的预测精度,准确描述网络流量变化规律,提出了一种基于向量回归的网络流量预测模型,它能全面刻画网络流量变化趋势.  相似文献   

3.
采用支持向量机理论建立了一种新的支持向量回归预测模型,模型的求解可转化为二次规划问题,并能实现模型参数的自动选择,运用MATALAB软件进行编程实现.用此模型对我国财政收入问题进行了预测,并与统计回归模型进行了比较,结果表明了该模型具有较好的预测效果和概化能力.  相似文献   

4.
在保证足够信息量的前提下,针对合理减少气象观测站的实际问题,首先利用主成分分析(PCA) 降低样本数据的维数,其次利用支持向量回归机(SVR)对样本进行有效的回归,然后结合优化软件lingo对凸二次规划问题(与支持向量回归机相对应)进行求解,最终得出基于主成分分析-支持向量机回归预测优化模型。  相似文献   

5.
将主成分分析和支持向量机回归相结合, 以广西5、6月区域平均日降水量作为预报对象, 进行区域日降水量预测研究.首先,整理分析大量的T213数值预报产品信息数据进行主成分分析, 得到主成分数据序列; 其次, 根据主成分数据序列建立训练集训练支持向量机, 并利用遗传算法优化参数; 最后, 输入支持向量机所需数据, 得到主成分预测结果, 建立广西日降水预报模型. 实例计算结果表明, 支持向量机回归模型比逐步回归模型有更好的预测能力.  相似文献   

6.
随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,本文以山西省1993-2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal component analysis-fruit fly optimization algorithm-support vector regression,PCA-FOA-SVR)的红枣产量预测模型。首先利用主成分分析(principal component analysis,PCA)对数据进行降维处理,以5维的指标作为输入变量,产量作为输出变量;其次以支持向量机回归(support vector regression,SVR)为基础模型,利用果蝇优化算法(fruit fly optimization algorithm,FOA)对SVR参数(c,g)进行寻优,构建PCA-FOA-SVR模型;对试验结果进行验证,发现PCA-FOA-SVR的均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、决定系数(coefficient of determination,R2)分别为3.11、3.01、0.96,SVR的各指标分别为5.33、4.07、0.9,分别提高了41.7%、26%、6.7%,最后通过GM(1,1)对各维度的数据进行预测,利用PCA-FOA-SVR模型对未来10年山西省红枣产量进行预测,结果显示在2025年红枣产量会达到一个峰值,对本文的后续研究提供了一定的帮助。  相似文献   

7.
针对风速随机性大、影响因素多、预测准确度不高的情况,基于支持向量机与信息几何的统计学关联性,从信息几何学角度分析核函数的几何结构,构造数据依赖核函数,并与支持向量机回归相结合,形成数据依赖核支持向量机回归(Data Dependent Kernel-SVR,DDK-SVR)方法.将该方法用于风速预测中,建立DDK-SVR风速预测模型,并将预测结果与传统支持向量机、神经网络方法进行对比.结果表明,DDK-SVR方法具有更高的预测精度.  相似文献   

8.
基于支持向量回归机的中国碳排放预测模型   总被引:2,自引:0,他引:2  
选取人口、城镇化率、人均GDP、服务业增加值比重、单位GDP能耗、煤炭消费比例等6项影响因素作为自变量,运用支持向量回归机方法构建中国碳排放预测模型。以1980—2009年碳排放及影响因素数据为样本,通过训练、测试得到具有良好学习与推广能力的支持向量回归机模型。结合"十二五"规划,设置不同情境下影响因素预测值,对2010—2015年中国碳排放进行预测。预测结果表明,中国可适当降低GDP增速,不断优化能源结构,以确保碳减排目标的有效实现。  相似文献   

9.
基于包钢6号高炉的在线生产数据,首先建立铁水硅含量序列的自回归AR(p)模型,分析其滞后阶数;然后对硅含量的自回归项及影响因素进行主成分分析,找到多元变量相互独立的有效信息作为输入变量;最后建立铁水硅含量的支持向量机回归预测模型。该模型对炉温预测的准确度达到88.2%,对在线监测高炉炉温具有一定的实用价值。  相似文献   

10.
滚动轴承作为旋转机械设备中的关键部件,影响着设备的可靠性运行。为了智能开展设备维护工作,提高设备的运转效率,提出一种基于互信息(mutual information,MI)的主成分分析(principal component analysis,PCA)(MI-PCA)结合支持向量回归(support vector regression,SVR)的滚动轴承剩余寿命预测方法。首先利用小波包降噪算法剔除原始振动信号中的异常数据点和噪声,并基于降噪数据提取其时域、频域和时频域特征;然后结合特征与剩余寿命的互信息值进行特征筛选,再通过PCA降维算法获得可表征轴承退化状态的敏感特征,用于SVR的输入;最后构建并训练SVR剩余寿命预测模型,并将其应用于滚动轴承全寿命试验数据。试验结果表明与基于MI和基于PCA的SVR回归预测模型(MI-SVR模型、PCA-SVR模型)相比,基于MI-PCA的SVR模型具有更高的预测精度(预测精度可达97%),能够实现滚动轴承剩余寿命的精准预测,为开展及时有效的设备维护工作提供了决策依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号