首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The hyperfine structure splittings of the electronic ground states2 D 3/2 and2 D 3/2 of the stable isotope Sc45 have been measured by the atomic beam magnetic resonance method. From these splittings the magnetic dipole and electric quadrupole interaction constants are found to bea 3/2=(269,560±0,02) Mc/sb 3/2=?(26,37±0,1) Mc/sa 5/2=(109,034±0,01) Mc/sb 5/2=?(37,31±0,1) Mc/s. The values of the electric quadrupole moment calculated fromb 3/2 andb 5/2 differ by about 5% indicating that the configuration 3d 4s 2 of the ground states is perturbed by higher configurations. Averaging these two values we obtain for the quadrupole moment of Sc45 Q(Sc45)=?(0,22±0,01) · 10?24 cm2.  相似文献   

2.
The hyperfine structure of the 32P3/2-state in the Na(I)-spektrum was investigated by optical double resonance. Three zero fieldrf-transitions (ΔF=±1, ΔmF=0) were detected and thus the unambiguous interpretation of therf-spectrum was made possible. From an analysis of therf-spectrum one obtains the magnetic hyperfine structure splitting constant a=(18.5 ?0.2 +0.6 ) Mc/sec the electric quadrupole interaction constantb=(3.2±0.5) Mc/sec which yields an electric quadrupole moment Q(Na23)=(0.138±0.025)·1024cm2.  相似文献   

3.
The hyperfine structure splittings of the electronic ground statea 4 F 9/2 in the Co59-I-spectrum have been measured with a magnetic atomic-beam resonance-apparatus. From these splittings the magnetic dipole and electric quadrupole interaction constants are found to beA (a 4 F /2)=(450,284±0,01) Mc/sec,B (a 4 F 9/2)= (139,63±0,5) Mc/sec. Taking into account the mixture of thea 4 F 9/2 state with states of the same 3d 7 4s 2-electron-configuration, an electric quadrupole moment of Co59 ofQ=(0,404±0,04) 10?24 cm2 was obtained. No Sternheimer-correction has been included.  相似文献   

4.
In order to determine the electric quadrupole moment of Sr87 (I= 9/2) the hyperfine structure-splitting of the 5s5p 3 P 1-state of the SrI-spectra was investigated by optical double resonance. By detection of high frequency transitions (ΔF=±1,Δm F=0,±1) in an external magnetic fieldH 0≈0 one obtains the hyperfine structure separations asv F=11/2?F=9/2=1463·149 (6) Mc/sec andv F=9/2?F=7/2=1130·264 (6) Mc/sec. From these frequencies one calculates the magnetic hyperfine structure-splitting constantA=?260·084 (2) Mc/sec and the electric quadrupole interaction constantB=?35·658 (6) Mc/sec. B leads to an electric quadrupole moment ofQ(Sr87)=+0·36 (3)·10?24 cm2.  相似文献   

5.
An electric Molecular-Beam-Resonance-Spectrometer has been used to measure simultanously the Zeeman- and Starkeffect splitting of the hyperfinestructure of TlF. Electric fourpole lenses served as focusing and refocusing fields of the spectrometer. A homogenous magnetic field (Zeeman-Field) was superimposed to the electric field (Stark-Field) in the transition region of the apparatus. The observedΔm J =±1 -transitions were induced electrically. Completely resolved spectra of Tl205F19 in theJ=1 rotational, andυ=0 vibrational state have been measured. The obtained quantities are: The rotational magnetic momentμ J of Tl205F19 in the stateJ=1,υ=0, and the difference of the magnetic shielding (σ 1,±1?σ 1,0) of both nuclei as well as the difference of the molecular susceptibility (ξ 1,±1?ξ 1,0) in the states (J, m J)=(1,±1) and (J, mJ)=(1, 0). The sign of the rotational magnetic moment could be determined unambigously by the influence of offdiagonal matrix elements. The numerical values for Tl205F19 in the stateJ=1 andυ=0 are:μ J =?29,153(21) · 10?6 μ Bohr (σ 1,±1?σ 1,0)Tl=?0,002291 (33) (σ 1,±1?σ 1,0)F=?0,000206(9) (ξ 1,±1-ξ 1,0)=+3,02(15) · 10?30erg/Gauß2 The quantities in brackets are root-mean-square deviations in units of the last digit. From these data and the known values for the spin-rotational interaction constants a number of expressions are derived which characterise the electronic charge distribution in the molecule.  相似文献   

6.
In an atomic beam magnetic resonance experiment the hyperfine interaction constantsA andB of the5 I 8 groundstate of Dy161 and Dy163 were found to be Dy161:A=?(115.8±1)MHz, Dy163:A=(162.9±0.6)MHz,B=(1102±15)MHz,B=(1150±20)MHz. Using an effective value for 〈r?3〉, the magnetic moments and electric quadrupole moments of the Dy161 and Dy163 nuclei were calculated to be Dy161:μ I=?(0.47±0.09) n.m., Dy163:μ I=(0.66±0.13)n.m.,Q=(2.36±0.4)barns,Q=(2.46±0.4)barns.  相似文献   

7.
Level crossings obeying the selection ruleΔm=2 have been detected in the 62 P 3/2-state of both Rb85 and Rb87. Using the measured crossing points, the ratios of the hyperfinestructure constants to theg J -factor are determined from a calculation for intermediate magnetic fields. The ratios areA 85/g J =6.119 (3) Mc/s,B 85/g J =6.14 (2) Mc/s,A 87/g J =20.70 (3) Mc/s,B 87/g J =2.93 (5) Mc/s. From the zero field level crossing of Rb87 the lifetimeτ=1.14 (6) · 10?7sec of the 62P3/2-state is obtained. Level crossing signals have also been observed in the presence of noble gas admixtures.  相似文献   

8.
The halflife of excited states in some nuclei has been measured by the method of delayed coincidences. Two different experimental arrangements have been used: a conventional scintillation counter equipment and a fast gasfilled parallelplate avalanche-counter. The results of these measurements are: 31 keV-level in Al28:T 1/2=(1.91±0.08) · 10?9 sec, 81 keV-level in Cs133:T 1/2=(6.25±0.05) · 10?9 sec, 145 keV-level in Pr141:T 1/2=(1.85±0.03) · 10?9 sec, 100keV-level in W182:T 1/2=(1.45±0.04) · 10?9 sec, 1290 keV-level in W182 T 1/2=(1.05±0.03) · 10?9 sec, 99 keV-level in Pt195:T 1/2≦1.6 · 10?10 sec, 129 keV-level in Pt195:T 1/2=(6.2±0.7) · 10?10 sec. These experimental values are discussed and compared with theoretical model predictions.  相似文献   

9.
The hyperfine structure of the groundstate 6s 2 S 1/2 and the nuclear magnetic dipole moment of gold 197 have been studied by the atomic beam magnetic resonance technique. A special high frequency arrangement is described. The hyperfine structure separationΔ v was determined fromΔF=1 transitions. The magnetic dipole momentμ I was measured by a direct method. The experiments yield the following results:Δv (2S1/2)=(6099,309±0,010) Mc/secμ I (Au197)=+(0,1445±0,0014)μ K.  相似文献   

10.
Using two different experimental arrangements, the halflife of the following excited nuclear states in Gd155 have been measured by the method of delayed coincidences: 60.0 keV-level:T 1/2=(2.4±0.6) · 10?10 sec, 86.5 keV-level:T 1/2=(6.35±0.09) · 10?9 sec, 105.3 keV-level:T 1/2=(1.14±0.03) · 10?9 sec. These results are discussed and compared with the predictions of the collective model.  相似文献   

11.
The level-crossing technic has been used to investigate the hyperfinestructur of the 3d 10 4p 2 P 3/2-term in Copper I by scattering the resonance line λ=3248 Å on an atomic beam of separated isotop Cu63 respectively Cu65 in an external magnetic field. From the level-crossing signals values for the magnetic dipol interaction constantsA and for the electric quadrupol interaction constantsB are deduced to beeA(Cu63)=(194,72±0,15) Mc/secB(Cu63)=?(28,8±0,6) Mc/secA(Cu65)=(208,57±0,15) Mc/secB(Cu65)=?(25,9±0,6) Mc/sec. With theA-value of the 3d 10 4p2P1/2-term from optical measurements the ratioA(2 P 3/2)∶A(2 P 1/2)≈0,4 is about twice greater than for an unperturbetalkali-like2P-term. From the width of the level-crossing signals a mean lifetime of the 3d10 4p2P3/2-term τ=(7,0±0,2) · 10?9 sec is deduced.  相似文献   

12.
In the decay of Fe59 the following quantities have been measured:γ-ray intensities, conversion coefficients andβ-(circularly polarizedγ) correlations. The conversion coefficients were found to be: for the 1.10 MeVγ-transition, αtot.=(1.36±0.10)·10?4 and for the 1.29 MeVγ-transition, αtot.=(1.07±0.08)·10?4. The asymmetry parameterA of the correlationβ(0.27 MeV)?γ(1.29 MeV) were measured to beA= ?0.17±0.10, and forβ(0.46 MeV)?γ(1.10 MeV),A=?0.13±0.04. From these data and publishedγ?γ angular correlation measurements the following spins of Co59 levels could be deduced: 1.10 MeV,I=5/2?; 1.29 MeV,I=5/2?; and 1.43 MeV,I=3/2?. The two strongβ-ray groups are pure Gamow-Teller transitions (ΔI=1). The multipolarities of all fiveγ-rays are given.  相似文献   

13.
The rotation of the angular correlation between theγ-group at about 820 keV and the 80 keV radiation in the decay of Tm168 has been observed in an external magnetic field of 20300 gauss. The result:ω R·τ=0,485±0,051 yields for theg R -factor of the 80 keV state of Er168:g R =+0,25±0,03. The evaluation includes a paramagnetic correction factor of:β=7,26, (B eff=β·B ext). The angular correlation is slightly attenuated by internal fields. For a liquid source of Tm (NO3)3 solved in 3 n HNO3, a measurement of the differential angular correlation as a function of the delay time gave:λ 2=(5,8±2,9)·107sec?1, assumingA 2(t)=A 2(0)·e ?λ 2·t. The half life of the 80 keV state was found to be:T 1/2=(1,92±0,04)·10?9sec in agreement with earlier measurements.  相似文献   

14.
The hyperfine structure of the 62 P 3/2 state of Rb87 has been reinvestigated with optical double resonance in zero magnetic field. The results for the hfs-splitting constants areA(62 P 3/2, Rb87)=27.70 (2) Mc/s andB(62 P 3/2, Rb87)=3.94 (4) Mc/s. From these constants one obtains a value for the nuclear quadrupole moment uncorrected for shielding effects ofQ=+0.138 (1)·10?24 cm2.  相似文献   

15.
In an atomic beam magnetic resonance experiment, the hyperfine interaction constantsA andB of the4 I 2/15-groundstate of Ho165 were found to beA=800,58389 (50) MHz,B=?1667,997 (50) MHz. Using an effective value for 〈r ?3〉, the magnetic moment of the Ho165 nucleus was calculated to beμ=4·1(4)μ n . The quadrupolement was determined by use of the 〈r ?3〉 given byWatson andFreeman. The result isQ=2·4·10?24 cm2.  相似文献   

16.
TheK-conversion coefficients α K of the nuclear isomers Se77m , Se79m , Ge75m and Ge77m have been measured by detecting theK-röntgen- andγ-radiation from neutron-irradiated Se- and GeO2-samples with the aid of scintillation counters to be α K =0.79±0.06, 7.4±0.6, 1.44±0.13, and 1.2±0.6, respectively. In all cases, the values obtained, are in agreement with those taken from the tables ofRose under the assumption of anE3-transition, thus confirming this assignment which was proposed earlier by other authors. In addition, the cross sectionsσ for inducing the activities by slowed down neutrons have been measured to beσ=22±2, 0.40±0.04, 0.20±0.02, and 0.12±0.03 barns, respectively, and are compared with earlier data of several authors.  相似文献   

17.
The short lived indium isomer produced by thermal neutron capture is confirmed to be In116. A new determination of half-live andγ energy yieldsT 1/2=(2.17α0.07) sec andE γ=(164±1) keV. From measurement of theK shell conversion coefficient follows that the multipolarity of the transition isE 3, leading to a spin and parity assignment of 8? for the isomeric level.  相似文献   

18.
Hg199m was produced from natural HgO by fastn irradiation. The cascade decay was investigated with scintillation spectrometers by application of the summing technique. The following results were obtained: half-lifeT 1/2=(43±0,5) min; energy of the isomeric transitionE γ1=(375±3)keV; conversion coefficients α K375=3,05±0,25; αtotal=5,45±0,25; yielding the multipole order of the isomeric transition to beM4+(25±15)%E5; energy of the second transitionE γ2=(159±2)keV; conversion coefficients α K159=0,30±0,03; αtotal=0,9±0,1, confirming the multipolarityE2 of this transition.  相似文献   

19.
A molecular beam resonance apparatus with electric quadrupole lenses asA- andB-fields and with superimposed parallel electric and magnetic transition-fields was used. Molecules in different rotational statesJ, m J are separated by theA-field. Spectra of molecules in different vibrational states are resolved by their different Starkeffect energies. By this means the following electric and magnetic properties of the molecule could be measured in the rotational stateJ=1 and vibrational statesv=0 and 1: The magnetic and electric dipole moment of the molecule, the scalar and the tensor nuclear dipole — dipole interactiond s andd T, the nuclear spinrotational interactionc F andc Rb, the nuclear quadrupole interactioneqQ, the nuclear magnetic moment μRb, the anisotropy of the diamagnetic susceptibility ξ, the anisotropy of the diamagnetic shielding of the external field by the electrons at the position of the nuclei σ. Using these quantities it was possible to calculate the quadrupole moment and a weighted quadrupole moment of the electronic charge distribution. The results are: (J=1,v=0) μel=8,5464 (17) debμ J/J=?29,79(2)x10?6 μ B d s/h=0,36(23) kHzd T/h=0,69(22)kHzc F/h=10,42(70) kHzc Rb/h=0,479 (48) kHz.eqQ Rb/h=?70,3410(26) MHzμ(1?σS)Rb=1,3474(5) μk⊥-ξ )=12(6)×10?30 erg/Gauß2⊥-σ∥)Rb=?3,8(2,1)×10?4⊥-σ )F=?2,6(3)×10?4  相似文献   

20.
To study the modification of the value of the nuclear quadrupole moment obtained without Sternheimer correction from measurements in states with different principal quantum numbers, the hyperfine structure splitting of the 52 P 3/2 and the 62 P 3/2 excited states of Rb I has been investigated with the optical double resonance method. The experiments, in which isotopic enriched samples of Rb85 and Rb87 were used, have been carried out in the 52 P 3/2 state without a static magnetic field. In the 62 P 3/2 state, a static magnetic field was applied. For the 52 P 3/2 state, the hyperfine structure constants areA(Rb85)=25.029(16) Mc/s,B(Rb85)=26.032(70) Mc/s,A(Rb87)=84.852(30) Mc/s,B(Rb87)=12.611(70) Mc/s. The corresponding constants for the 62 P 3/2 state areA(Rb85)=8.25(10) Mc/s,B(Rb85)=8.16(20) Mc/s,A(Rb87)=27.96(35) Mc/s,B(Rb87)=3.95(10) Mc/s. The values of the nuclear quadrupole moments, derived from both finestructure states, can be brought into agreement when the Sternheimer core correction is applied. The Landé factor for the 62 P 3/2 state isg j=1.334(1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号