首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A higher-order global–local theory is proposed based on the double-superposition concept for free vibration and dynamic buckling analyses of viscoelastic composite/sandwich plates subjected to thermomechanical loads. In contrast to all theories proposed so far for analysis of the viscoelastic plates, the continuity conditions of the transverse shear and normal stresses at the layer interfaces and the nonzero traction conditions at the top and bottom surfaces of the sandwich plates are satisfied. Another novelty is that these conditions may be satisfied for viscoelastic plates with temperature-dependent material properties and nonlinear behaviors subjected to thermomechanical loads. Furthermore, transverse flexibility is also taken into account. Some dynamic buckling/wrinkling analyses of the viscoelastic plates are performed in the present paper, for the first time. Comparisons made between results of the paper and results reported by well-known references confirm the accuracy and the efficiency of the proposed theory and the relevant solution algorithm.  相似文献   

2.
In this paper, special warping functions (dynamic modes) are used to develop a high-order theory for static–dynamic analysis of laminated plates. The dynamic modes take into account the difference of stiffness of each layer. Through comparison with elasticity solution of Pagano (1969), with the classical models (Bolle, 1947; Reissner, 1945, 1975, 1985; Mindlin, 1951), with the high-order theory of Lo et al. (1977) and the homogeneous warping theory of Hassis (2000), it is shown that the present theory correctly and simply models effects attainable only by high-order theories and sometimes not attainable by the homogeneous high-order theories.  相似文献   

3.
We investigate the initial value problem for the Einstein–Euler equations of general relativity under the assumption of Gowdy symmetry on T 3, and we construct matter spacetimes with low regularity. These spacetimes admit both impulsive gravitational waves in the metric (for instance, Dirac mass curvature singularities propagating at light speed) and shock waves in the fluid (that is, discontinuities propagating at about the sound speed). Given an initial data set, we establish the existence of a future development, and we provide a global foliation in terms of a globally and geometrically defined time-function, closely related to the area of the orbits of the symmetry group. The main difficulty lies in the low regularity assumed on the initial data set which requires a distributional formulation of the Einstein–Euler equations.  相似文献   

4.
5.
6.
7.
A compactness framework is established for approximate solutions to the Euler equations in one-dimensional nonlinear elastodynamics by identifying new properties of the Lax entropies, especially the higher order terms in the Lax entropy expansions, and by developing ways to employ these new properties in the method of compensated compactness. Then this framework is applied to establish the existence, compactness, and decay of entropy solutions in L for the Euler equations in nonlinear elastodynamics with a more general stress-strain relation than those for the previous existence results. This compactness framework is further applied to solving the Euler equations of conservation laws of mass, momentum, and energy for a class of thermoelastic media, and the equations of motion of viscoelastic media with memory.  相似文献   

8.
We address the problem of local uniqueness of weak solutions to the Navier–Stokes system, with the initial datum in a subspace of . The existence and uniqueness of local mild solutions has been proven by Koch and Tataru (Adv Math 157:22–35, 2001). We present a necessary and sufficient condition for two weak solutions to evolve from the same initial datum, and for weak solutions to be mild.   相似文献   

9.
We consider evolution variational inequalities with λ 0-pseudomonotone maps. The main properties of these maps are investigated. By using the finite-difference method, we prove the property of strong solvability for the class of evolution variational inequalities with λ 0-pseudomonotone maps. Using the penalty method for multivalued maps, we show the existence of weak solutions of evolution variational inequalities on closed convex sets. The class of multivalued penalty operators is constructed. We also consider a model example to illustrate this theory.  相似文献   

10.
We develop a continuum-mechanical formulation and generalization of the Navier–Stokes-α equation based on a recently developed framework for fluid-dynamical theories involving higher-order gradient dependencies. Our flow equation involves two length scales α and β. The first of these enters the theory through the specific free-energy α 2|D|2, where D is the symmetric part of the gradient of the filtered velocity, and contributes a dispersive term to the flow equation. The remaining scale is associated with a dissipative hyperstress which depends linearly on the gradient of the filtered vorticity and which contributes a viscous term, with coefficient proportional to β 2, to the flow equation. In contrast to Lagrangian averaging, our formulation delivers boundary conditions and a complete structure based on thermodynamics applied to an isothermal system. For a fixed surface without slip, the standard no-slip condition is augmented by a wall-eddy condition involving another length scale characteristic of eddies shed at the boundary and referred to as the wall-eddy length. As an application, we consider the classical problem of turbulent flow in a plane, rectangular channel of gap 2h with fixed, impermeable, slip-free walls and make comparisons with results obtained from direct numerical simulations. We find that α/β ~ Re 0.470 and /h ~ Re −0.772, where Re is the Reynolds number. The first result, which arises as a consequence of identifying the specific free-energy with the specific turbulent kinetic energy, indicates that the choice β = α required to reduce our flow equation to the Navier–Stokes-α equation is likely to be problematic. The second result evinces the classical scaling relation η/L ~ Re −3/4 for the ratio of the Kolmogorov microscale η to the integral length scale L.   相似文献   

11.
In this paper, we investigate the problem of designing ℋ filter for a class of continuous-time uncertain singular systems with nonlinear perturbations, which can be realized in practice. The perturbation is a time-varying function of the system state and satisfies a Lipschitz constraint. The design objective is to guarantee that a prescribed upper bound on an ℋ performance of the robust filter is attained for all possible energy-bounded input disturbances and all admissible uncertainties and which can be implemented on-line to get a good replica of the state. We first establish sufficient condition for the existence and uniqueness of solution to the singular system connected with the normal filter. Using a linear matrix inequality (LMI) format, we then provide a sufficient condition for the asymptotic stability of the realizable ℋ filter. Then by means of a convex analysis procedure the filter gain matrices are derived and an important special case is readily deduced. Finally, a numerical example is presented to illustrate the theoretical developments.  相似文献   

12.
In this paper, a unified Chebyshev–Ritz formulation is presented to investigate the vibrations of composite laminated deep open shells with various shell curvatures and arbitrary restraints, including cylindrical, conical and spherical ones. The general first-order shear deformation shell theory is employed to include the effects of rotary inertias and shear deformation. Under the current framework, regardless of boundary conditions, each of displacements and rotations of the open shells is invariantly expressed as Chebyshev orthogonal polynomials of first kind in both directions. Then, the accurate solutions are obtained by using the Rayleigh–Ritz procedure based on the energy functional of the open shells. The convergence and accuracy of the present formulation are verified by a considerable number of convergence tests and comparisons. A variety of numerical examples are presented for the vibrations of the composite laminated deep shells with various geometric dimensions and lamination schemes. Different sets of classical constraints, elastic supports as well as their combinations are considered. These results may serve as reference data for future researches. Parametric studies are also undertaken, giving insight into the effects of elastic restraint parameters, fiber orientation, layer number, subtended angle as well as conical angle on the vibration frequencies of the composite open shells.  相似文献   

13.
The derivation of counterexamples to L1 estimates can be reduced to a geometric decomposition procedure along rank-one lines in matrix space. We illustrate this concept in two concrete applications. Firstly, we recover a celebrated, and rather complex, counterexample by Ornstein, proving the failure of Korns inequality, and of the corresponding geometrically nonlinear rigidity result, in L1. Secondly, we construct a function f:2 which is separately convex but whose gradient is not in BVloc, in the sense that the mixed derivative 2f/x1x2 is not a bounded measure.Acknowledgement We thank BERND KIRCHHEIM for bringing the question of regularity of separately convex functions to our attention. This work was partially supported by the EU Research Training Network Hyperbolic and Kinetic Equations, contract HPRN-CT-2002-00282, and by the Deutsche Forschungsgemeinschaft through the Schwerpunktprogramm 1095 Analysis, Modeling and Simulation of Multiscale Problems.  相似文献   

14.
Correlations are presented to compute the mutual solubilities of CO2 and chloride brines at temperatures 12–300°C, pressures 1–600 bar (0.1–60 MPa), and salinities 0–6 m NaCl. The formulation is computationally efficient and primarily intended for numerical simulations of CO2-water flow in carbon sequestration and geothermal studies. The phase-partitioning model relies on experimental data from literature for phase partitioning between CO2 and NaCl brines, and extends the previously published correlations to higher temperatures. The model relies on activity coefficients for the H2O-rich (aqueous) phase and fugacity coefficients for the CO2-rich phase. Activity coefficients are treated using a Margules expression for CO2 in pure water, and a Pitzer expression for salting-out effects. Fugacity coefficients are computed using a modified Redlich–Kwong equation of state and mixing rules that incorporate asymmetric binary interaction parameters. Parameters for the calculation of activity and fugacity coefficients were fitted to published solubility data over the PT range of interest. In doing so, mutual solubilities and gas-phase volumetric data are typically reproduced within the scatter of the available data. An example of multiphase flow simulation implementing the mutual solubility model is presented for the case of a hypothetical, enhanced geothermal system where CO2 is used as the heat extraction fluid. In this simulation, dry supercritical CO2 at 20°C is injected into a 200°C hot-water reservoir. Results show that the injected CO2 displaces the formation water relatively quickly, but that the produced CO2 contains significant water for long periods of time. The amount of water in the CO2 could have implications for reactivity with reservoir rocks and engineered materials.  相似文献   

15.
Hybrid unsteady-flow simulation combining particle tracking velocimetry (PTV) and direct numerical simulation (DNS) is introduced in the series of two papers. Particle velocities on a laser-light sheet acquired with time-resolved PTV in a water tunnel are supplied to two-dimensional DNS with time intervals corresponding to the frame rate of the PTV. Hybrid velocity fields then approach those representing the PTV data in the course of time, and the reconstructed velocity fields satisfy the governing equations with the resolution comparable to numerical simulation. In part 2, by extending the capabilities of the hybrid simulation to higher Reynolds numbers, we simulate flows past the NACA0012 airfoil over ranges of Reynolds numbers (Re ≤ 104) and angles of attack (−5° ≤ α ≤ 20°) and validate the proposed technique by comparing with experimental results in terms of the lift and drag coefficients. We also compare the results with unsteady Reynolds-averaged Navier–Stokes (URANS) simulation in two-dimensions and show the advantages of the hybrid simulation against two-dimensional URANS.  相似文献   

16.
We develop a hybrid unsteady-flow simulation technique combining direct numerical simulation (DNS) and particle tracking velocimetry (PTV) and demonstrate its capabilities by investigating flows past an airfoil. We rectify instantaneous PTV velocity fields in a least-squares sense so that they satisfy the equation of continuity, and feed them to the DNS by equating the computational time step with the frame rate of the time-resolved PTV system. As a result, we can reconstruct unsteady velocity fields that satisfy the governing equations based on experimental data, with the resolution comparable to numerical simulation. In addition, unsteady pressure distribution can be solved simultaneously. In this study, particle velocities are acquired on a laser-light sheet in a water tunnel, and unsteady flow fields are reconstructed with the hybrid algorithm solving the incompressible Navier–Stokes equations in two dimensions. By performing the hybrid simulation, we investigate nominally two-dimensional flows past the NACA0012 airfoil at low Reynolds numbers. In part 1, we introduce the algorithm of the proposed technique and discuss the characteristics of hybrid velocity fields. In particular, we focus on a vortex shedding phenomenon under a deep stall condition (α = 15°) at Reynolds numbers of Re = 1000 and 1300, and compare the hybrid velocity fields with those computed with two-dimensional DNS. In part 2, the extension to higher Reynolds numbers is considered. The accuracy of the hybrid simulation is evaluated by comparing with independent experimental results at various angles of attack and Reynolds numbers up to Re = 104. The capabilities of the hybrid simulation are also compared with two-dimensional unsteady Reynolds-Averaged Navier–Stokes (URANS) solutions in part 2. In the first part of these twin papers, we demonstrate that the hybrid velocity field approaches the PTV velocity field over time. We find that intensive alternate vortex shedding past the airfoil, which is predicted by the two-dimensional DNS, is substantially suppressed in the hybrid simulation and the resultant flow field is similar to the PTV velocity field, which is projection of the three-dimensional velocity field on the streamwise plane. We attempt to identify the motion that originates three-dimensional flow patterns by highlighting the deviation of the PTV velocity field from the two-dimensional governing equations at each snapshot. The results indicate that the intensive spots of the deviation appear in the regions in which three-dimensional instabilities are induced in the shear layer separated from the pressure side.  相似文献   

17.
18.
Flow over vegetation and bottom of rivers can be characterized by some sort of porous structure of irregular surface through which a fluid permeates. Also, in engineering systems, one can have components that make use of a working fluid flowing over irregular layers of porous material. This article presents numerical solutions for such hybrid medium, considering here a channel partially filled with a flat porous layer saturated by a fluid flowing in turbulent regime. One unique set of transport equations is applied to both the regions. A diffusion-jump model for both the turbulent kinetic energy and its dissipation rate, across the interface, is presented and discussed upon. The discretization steps taken for numerically accommodating such model in the system of algebraic equations are presented. Numerical results show the effects of Reynolds number, porosity, and permeability on mean and turbulence fields. Results indicate that when negative values for the stress jump coefficient are applied, the peak of the turbulent kinetic energy distribution occurs at the macroscopic interface.  相似文献   

19.
The paper extends a stabilized fictitious domain finite element method initially developed for the Stokes problem to the incompressible Navier–Stokes equations coupled with a moving solid. This method presents the advantage to predict an optimal approximation of the normal stress tensor at the interface. The dynamics of the solid is governed by Newton׳s laws and the interface between the fluid and the structure is materialized by a level-set which cuts the elements of the mesh. An algorithm is proposed in order to treat the time evolution of the geometry and numerical results are presented on a classical benchmark of the motion of a disk falling in a channel.  相似文献   

20.
Transport equations in integral form are well established for analysis in continuum fluid dynamics but less so for solid mechanics. Four classical continuum mechanics transport equations exist, which describe the transport of mass, momentum, energy and entropy and thus describe the behaviour of density, velocity, temperature and disorder, respectively. However, one transport equation absent from the list is particularly pertinent to solid mechanics and that is a transport equation for movement, from which displacement is described. This paper introduces the fifth transport equation along with a transport equation for mechanical energy and explores some of the corollaries resulting from the existence of these equations. The general applicability of transport equations to discontinuous physics is discussed with particular focus on fracture mechanics. It is well established that bulk properties can be determined from transport equations by application of a control volume methodology. A control volume can be selected to be moving, stationary, mass tracking, part of, or enclosing the whole system domain. The flexibility of transport equations arises from their ability to tolerate discontinuities. It is insightful thus to explore the benefits derived from the displacement and mechanical energy transport equations, which are shown to be beneficial for capturing the physics of fracture arising from a displacement discontinuity. Extended forms of the Rankine–Hugoniot conditions for fracture are established along with extended forms of J -integrals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号