首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current gel-based protein profiling methods such as 2-DE and fluorescent 2-D difference in gel electrophoresis (DIGE) evaluate small portions of complex proteomes. Hence, sample prefractionation is essential for more comprehensive proteome coverage and detection of low-abundant proteins. In this study, we describe the combination of DIGE labeling with microscale solution IEF (MicroSol-IEF) fractionation and subsequent analysis on slightly overlapping narrow pH range 2-D gels. By fluorescently tagging and mixing samples and controls prior to prefractionation, complications resulting from minor run-to-run variations during MicroSol-IEF separations of multiple samples are avoided. This greatly improves the reliability of quantitative comparisons. To illustrate its utility, this 3-D DIGE strategy was applied to analysis of human melanoma cells and mouse lung tissue extracts. Approximately 1000 reproducible spots can be obtained from narrow range 2-D gels of individual MicroSol-IEF fractions, and approximately 6000 spots can be obtained from entire proteomes. Quantitative changes in closely related samples could be more reliably detected and the method has a greatly increased capacity to distinguish between closely related protein isoforms. Thus the 3-D DIGE strategy produces a powerful method for more comprehensive and more reliable quantitative comparisons of protein profiles of very complex proteomes.  相似文献   

2.
Cerebrospinal fluid (CSF) is in close proximity to the brain and changes in the protein composition of CSF may be indicative of altered brain protein expression in neurodegenerative disorders. Analysis of brain-specific proteins in CSF is complicated by the fact that most CSF proteins are derived from the plasma and tend to obscure less abundant proteins. By adopting a prefractionation step prior to two-dimensional gel electrophoresis (2-DE), less abundant proteins are enriched and can be detected in complex proteomes such as CSF. We have developed a method in which liquid-phase isoelectric focusing (IEF) is used to prefractionate individual CSF samples; selected IEF fractions are then analysed on SYPRO-Ruby-stained 2-D gels, with final protein identification by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). To optimise the focusing of the protein spots on the 2-D gel, the ampholyte concentration in liquid-phase IEF was minimised and the focusing time in the first dimension was increased. When comparing 2-D gels from individual prefractionated and unfractionated CSF samples it is evident that individual protein spots are larger and contain more protein after prefractionation of CSF. Generally, more protein spots were also detected in the 2-D gels from prefractionated CSF compared with direct 2-DE separations of CSF. Several proteins, including cystatin C, IgM-kappa, hemopexin, acetyl-coenzyme A carboxylase-alpha, and alpha-1-acid glycoprotein, were identified in prefractionated CSF but not in unfractionated CSF. Low abundant forms of posttranslationally modified proteins, e.g. alpha-1-acid glycoprotein and alpha-2-HS glycoprotein, can be enriched, thus better resolved and detected on the 2-D gel. Liquid-phase IEF, as a prefractionation step prior to 2-DE, reduce sample complexity, facilitate detection of less abundant protein components, increases the protein loads and the protein amount in each gel spot for MALDI-MS analysis.  相似文献   

3.
The requirement for prefractionation in proteomic analysis is linked to the challenge of performing such an analysis on complex biological samples and identifying low level components in the presence of numerous abundant housekeeping and structural proteins. The employment of a preliminary fractionation step results in a reduction of complexity in an individual fraction and permits more complete liquid chromatography/mass spectrometry (LC/MS) analysis. Free flow electrophoresis (FFE), a solution-based preparative isoelectric focusing technique, fractionates and enriches protein fractions according to their charge differences and is orthogonal in selectivity to the popular reversed phase high performance liquid chromatography (HPLC) fractionation step. In this paper, we explored the advantages of a combination of FFE and liquid chromatography/mass spectrometry to extend the dynamic range of a proteomic analysis of a complex cell lysate. In this study, the whole cell lysate of a chronic myelogeneous leukemia cell line, K562/CR3, was prefractionated by FFE into 96 fractions spanning pH 3-12. Of these, 35 fractions were digested with trypsin and then analyzed by LC/MS. Depending on the algorithm used for peptide assignment from MS/MS data, at least 319 proteins were identified through database searches. The results also suggested that pI could serve as an additional criterion besides peptide fragmentation pattern for protein identification, although in some cases, a pI shift might indicate post-translational modification. In summary, this study demonstrated that free flow electrophoresis provided a useful prefractionation step for proteomic analysis and when combined with LC/MS allowed the identification of significant number of low level proteins in complex samples.  相似文献   

4.
In the present study, we used 2-D differential gel electrophoresis (2-D DIGE) and MS to screen biomarker candidates in serum samples obtained from 39 patients with breast cancer and 35 controls. First, we pooled the serum samples matched with age and menopausal status. Then, we depleted the two most abundant proteins albumin and IgG by immunoaffinity chromatography under partly denaturing conditions in order to enrich low-abundance proteins and proteins with low molecular weight. Concentrated and desalted samples were labeled with three different CyDyes including one internal standard, pooled from all the samples, and separated with 2-D DIGE in triplicate experiments. Biological variations of the protein expression level were analyzed with DeCyder software and evaluated for reproducibility and statistical significance. The profile of differentially expressed protein spots between patients and controls revealed proapolipoprotein A-I, transferrin, and hemoglobin as up-regulated and three spots, apolipoprotein A-I, apolipoprotein C-III, and haptoglobin alpha2 as down-regulated in patients. Finally, routine clinical immunochemical reactions were used to validate selected candidate biomarkers by quantitative determination of specific proteins in all individual serum samples. The serum level of transferrin correlated well with the 2-D-DIGE results. However, the serum levels of apolipoprotein A-I and haptoglobin could not be detected with the clinical routine diagnostic tests. This demonstrated an advantage 2-D DIGE still has over other techniques. 2-D DIGE can distinguish between isoforms of proteins, where the overall immunochemical quantification does fail due to a lack of isoform-special antibodies.  相似文献   

5.
Currently, there are few methods to detect differences in posttranslational modifications (PTMs) in a specific manner from complex mixtures. Thus, we developed an approach that combines the sensitivity and specificity of click chemistry with the resolution capabilities of 2D‐DIGE. In “Click‐DIGE”, posttranslationally modified proteins are metabolically labeled with azido‐substrate analogs, then size‐ and charge‐matched alkyne‐Cy3 or alkyne‐Cy5 dyes are covalently attached to the azide of the PTM by click chemistry. The fluorescently‐tagged protein samples are then multiplexed for 2DE analysis. Whereas standard DIGE labels all proteins, Click‐DIGE focuses the analysis of protein differences to a targeted subset of posttranslationally modified proteins within a complex sample (i.e. specific labeling and analysis of azido glycoproteins within a cell lysate). Our data indicate that (i) Click‐DIGE specifically labels azido proteins, (ii) the resulting Cy‐protein conjugates are spectrally distinct, and (iii) the conjugates are size‐ and charge‐matched at the level of 2DE. We demonstrate the utility of this approach by detecting multiple differentially expressed glycoproteins between a mutant cell line defective in UDP‐galactose transport and the parental cell line. We anticipate that the diversity of azido substrates already available will enable Click‐DIGE to be compatible with analysis of a wide range of PTMs.  相似文献   

6.
Jarrold B  DeMuth J  Greis K  Burt T  Wang F 《Electrophoresis》2005,26(11):2269-2278
Proteomic analysis of biological samples in disease models or therapeutic intervention studies requires the ability to detect and identify biologically relevant proteins present in relatively low concentrations. The detection and analysis of these low-level proteins is hindered by the presence of a few proteins that are expressed in relatively high concentrations. In the case of muscle tissue, highly abundant structural proteins, such as actin, myosin, and tropomyosin, compromise the detection and analysis of more biologically relevant proteins. We have developed a practical protocol which exploits high-pH extraction to reduce or remove abundant structural proteins from skeletal muscle crude membrane preparations in a manner suitable for two dimensional gel electrophoresis. An initial whole-cell muscle lysate is generated by homogenization of powdered tissue in Tris-base. This lysate is subsequently partitioned into a supernatant and pellet containing the majority of structural proteins. Treatment of the pellet with high-pH conditions effectively releases structural proteins from membrane compartments which are then removed through ultracentrifugation. Mass spectrometric identification shows that the majority of protein spots reduced or removed by high-pH treatment were contractile proteins or contractile-related proteins. Removal of these proteins enabled successful detection and identification of minor proteins. Structural protein removal also results in significant improvement of gel quality and the ability to load higher amounts of total protein for the detection of lower abundant protein classes.  相似文献   

7.
To screen for new region-specific protein markers we compared the proteome maps of the primary visual and somatosensory areas V1 and S1 in mouse brain using 2-D difference gel electrophoresis (2-D DIGE). Twenty-three protein spots showed a statistically significant difference in expression level between V1 and S1, with 52% appearing more abundantly in V1. Twenty-six proteins were mass spectrometrically identified in 22 spots. To assess the validity of this list of potential areal markers generated by 2-D DIGE, the effective area-specific distribution profile of creatine kinase brain subtype (CKB), a protein with a clearly higher expression level in S1, was monitored with in situ hybridization. The mRNA expression profile of CKB displayed a clear area-specific distribution, which allowed demarcation of S1 and its topographical borders with neighboring neocortical areas. This proteomic study demonstrates the innovative application of 2-D DIGE and MS to select new regional markers for neuroscience research.  相似文献   

8.
There is a growing interest of pharmaceutical companies for plant‐based production systems. To facilitate the general acceptance of plants as bioreactors, the establishment of efficient downstream operations is critical. It has been proposed that a better understanding of the properties of the contaminant proteins can benefit downstream processing design and operation. The coupled application of 2‐DE with aqueous two‐phase partitioning has been suggested as a practical 3‐D method to characterize potential contaminant proteins from plant extracts. The application of this novel 3‐D approach to a complex protein extract from alfalfa (Medicago sativa) containing a model recombinant protein (human granulocyte colony stimulating factor (hG‐CSF)) resulted in the quantification of 55 protein spots. The 3‐D properties (Mr, pI, and Kp) obtained for 17 proteins comprising 69% of the alfalfa proteins, allowed the proposal of a prefractionation step as well as the identification of the target molecule (rG‐CSF) from bulk of alfalfa proteins. The information obtained from this experimental approach was useful for the identification of the potential contaminant proteins that will occur in alfalfa when this plant is used as a host for recombinant proteins. Additionally, this method will assist in the design of adequate purification strategies for recombinant proteins expressed in alfalfa green tissue.  相似文献   

9.
2-D DIGE is a method that circumvents the gel-to-gel variability inherent in conventional 2-DE and is particularly useful for studying proteome changes in diverse applications such as developmental biology and tissue proteomics. We developed a 2-D DIGE protocol for recombinant factor VIII (rFVIII), a therapeutic protein used for the treatment of hemophilia A. The factor VIII heterodimer is composed of heterogeneous, heavily glycosylated heavy and light chains that are held together by a divalent cation. 2-DE of rFVIII led to a separation of the various fragments whose identity could be determined by Western blot. A comparison of two rFVIII batches by 2-D DIGE revealed their identical composition, whereas an rFVIII variant lacking its central B domain was congruent with the smallest heavy and light chain fragments of rFVIII only. A simpler pattern was obtained upon removal of the terminal sialic acids of rFVIII's glycans, due to a better focusing in the first dimension. 2-D DIGE was also well suited to structurally evaluate various PEGylated rFVIII conjugates. 2-D DIGE thus proved an excellent and straightforward method for structural analysis of rFVIII. Our data suggest that the method could serve as a tool for quality control of very complex pharmaceutically active ingredients.  相似文献   

10.
mAb proteomics, a reversed biomarker discovery approach, is a novel methodology to recognize the proteins of biomarker potential, but requires subsequent antigen identification steps. While in case of high-abundant proteins, it generally does not represent a problem, for medium or lower abundant proteins, the identification step requires a large amount of sample to assure the proper amount of antigen for the ID process. In this article, we report on the use of combined chromatographic and precipitation techniques to generate a large set of fractions representing the human plasma proteome, referred to as the Analyte Library, with the goal to use the relevant library fractions for antigen identification in conjunction with mAb proteomics. Starting from 500?mL normal pooled human plasma, this process resulted in 783 fractions with the average protein concentration of 1?mg/mL. First, the serum albumin and immunoglobulins were depleted followed by prefractionation by ammonium sulfate precipitation steps. Each precipitate was then separated by size exclusion chromatography, followed by cation and anion exchange chromatography. The 20 most concentrated ion exchange chromatography fractions were further separated by hydrophobic interaction chromatography. All chromatography and precipitation steps were carefully designed aiming to maintain the native forms of the intact proteins throughout the fractionation process. The separation route of vitamin D-binding protein (an antibody proteomics lead) was followed in all major fractionation levels by dot blot assay in order to identify the library fraction it accumulated in and the identity of the antigen was verified by Western blot.  相似文献   

11.
The number of unique protein species in proteomes from a single mammalian cell type is not well defined but is likely to be at least 10000-20000. Since standard-size two-dimensional gels typically resolve only about 1500 to 3000 spots, they merely analyze a small portion of these proteomes. In addition, all insoluble proteins and typically proteins > 100 kDa are seldom resolved on two-dimensional (2-D) gels. The current study demonstrates the feasibility of an overall strategy for more comprehensive quantitative comparisons of complex proteomes derived from physiological fluids or mammalian cell extracts. A key feature of this approach is to prefractionate samples into a few well-resolved fractions based on the proteins' isoelectric points (pIs) using microscale solution isoelectric focusing. These fractions are then separated on narrow pH range two-dimensional gels approximately +/- 0.1 pH unit wider than the prefractionated pool. When this prefractionation approach is applied to complex mammalian proteomes, it improves resolution and spot recovery at high protein loads compared with use of parallel narrow pH range gels without prefractionation. The minimal cross-contamination between fractions allows quantitative comparisons in contrast to most alternative prefractionation methods. In addition, complementary data can be obtained by parallel analysis of the solubilized fraction on high-resolution large-pore-gradient one-dimensional gels followed by mass spectrometric identification to analyze proteins between 100 and approximately 500 kDa. Similarly, insoluble proteins can be analyzed using large-pore gels for large proteins and 10-12% one-dimensional sodium dodecyl sulfate (SDS) gels for smaller proteins. Together, these strategies should permit more reliable quantitative comparisons of complex mammalian proteomes where detection of at least 10000 protein spots is needed in order to analyze the majority of the unique protein species.  相似文献   

12.
Most lung cancers are diagnosed too late for curative treatment to be possible, therefore early detection is crucial. Serum proteins are a rich source of biomarkers and have the potential to be used as diagnostic and prognostic indicators for lung cancer. In order to examine differences in serum levels of specific proteins associated with human lung squamous carcinoma, immunodepletion of albumin and five other high-abundant serum proteins followed by 2-D difference gel electrophoresis (DIGE) analysis and subsequent MS was used to generate a panel of proteins found to be differentially expressed between the cancer and normal samples. Proteins found to have increased abundance levels in squamous cell carcinoma sera compared to normal sera included apolipoprotein A-IV precursor, chain F; human complement component C3c, haptoglobin, serum amyloid A protein precursor and Ras-related protein Rab-7b. Proteins found to have lower abundance levels in squamous cell carcinoma sera compared to normal sera included alpha-2-HS glycoprotein, hemopexin precursor, proapolipoprotein, antithrombin III and SP40; 40. The data presented here demonstrate that high-abundant protein removal combined with 2-D DIGE is a powerful strategy for the discovery of potential biomarkers. The identification of lung cancer-specific biomarkers is crucial to early detection, which in turn could lead to a dramatic increase in survival rates.  相似文献   

13.
Specific populations of normal and malignant epithelium from three radical prostatectomy tissue specimens were procured by laser capture microdissection (LCM) and analyzed by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Six proteins that were only seen in malignant cells and two proteins that were only seen in benign epithelium were reproducibly observed in two of two cases examined. Furthermore, these proteins were not observed in the 2-D PAGE profiles from the patient-matched microdissected stromal cell populations, but were seen in the protein profiles from the undissected whole cryostat sections. One of these proteins was determined to be prostate-specific antigen (PSA) by Western blot analysis, and intriguingly the remaining protein candidates were found to be at least as abundant as the PSA protein. Comparison of 2-D PAGE profiles of microdissected cell with matched in vitro cell lines from the same patient, and metastatic prostate cancer cell lines (LnCaP and PC3) showed striking differences between prostate cells in vivo and in vitro with less than 20% shared proteins. The data demonstrate that 2-D PAGE analysis of LCM-derived cells can reliably detect alterations in protein expression associated with prostate cancer, and that these differentially expressed proteins are produced in high enough levels which could allow for their clinical utility as new targets for therapeutic intervention, serum markers, and/or imaging markers.  相似文献   

14.
In a previous publication a large series of proteins were identified in fetal human brain by the use of two-dimensional electrophoresis (2-DE) with subsequent matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and MALDI-tandem time-of-flight (TOF/TOF) analysis. Further identification of many more different spots by traditional 2-DE without additional step such as narrow immobilized ph gradient (IPG) strips or prefractionation seems unlikely and we therefore decided to separate extracted brain proteins by ion-exchange chromatography using a TSK gel DEAE-5PW column followed by 2-DE of individual fractions and analysis by MALDI-TOF/TOF with LIFT technology in fetal brain of the early second trimester. About 1880 protein spots corresponding to 543 different gene products were identified. These proteins included housekeeping, signaling, cytoskeletal, metabolic, antioxidant, and neuron/synaptosomal specific proteins. Among these, 314 gene products (314/543, 57.8%), which have never been detected in traditional 2-DE of human fetal brain, were observed by this method. This updated map of fetal brain proteins may serve as data base and reference map for fetal brain proteins, and the methodology applied may be used as a valuable analytical tool for the basis of protein expressional studies in health and disease.  相似文献   

15.
2-D Difference gel electrophoresis (DIGE) circumvents many of the problems associated with gel comparison via the traditional 2-DE approach. DIGE's accuracy and precision, however, is compromised by the existence of other significant sources of systematic variation, including that caused by the apparatus used for imaging proteins (location of the camera and lighting units, background material, imperfections within that material, etc.). Through a series of experiments, we estimate some of these factors, and account for their effect on the DIGE experimental data, thus providing improved estimates of the true relative protein intensities. The model presented here includes 2-DE images as a special case.  相似文献   

16.
17.
Despite its excellent resolving power, 2-DE is of limited use when analyzing cellular proteomes, especially in differential expression studies. Frequently, fewer than 2000 protein spots are detected on a single 2-D gel (a fraction of the total proteome) regardless of the gel platform, sample, or detection method used. This is due to the vast number of proteins expressed and their equally vast dynamic range. To exploit 2-DE unique ability as both an analytical and a preparative tool, the significant sample prefractionation is necessary. We have used solution isoelectric focusing (sIEF) via the ZOOM IEF Fractionator (Invitrogen) to generate sample fractions from complex bacterial lysates, followed by parallel 2-DE, using narrow-range IPG strips that bracket the sIEF fractions. The net result of this process is a significant enrichment of the bacterial proteome resolved on multiple 2-D gels. After prefractionation, we detected 5525 spots, an approximate 3.5-fold increase over the 1577 spots detected in an unfractionated gel. We concluded that sIEF is an effective means of prefractionation to increase depth of field and improve the analysis of low-abundance proteins.  相似文献   

18.
As a first step in establishing a proteome database for maize, we have embarked on the identification of the leaf proteins resolved on two-dimensional (2-D) gels. We detected nearly 900 spots on the gels with a pH 4-7 gradient and over 200 spots on the gels with a pH 6-11 gradient when the proteins were visualized with colloidal Coomassie blue. Peptide mass fingerprints for 300 protein spots were obtained with matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometer and 149 protein spots were identified using the protein databases. We also searched the pdbEST databases to identify the leaf proteins and verified 66% of the protein spots that had been identified using the protein databases. Sixty-seven additional protein spots were identified from expressed sequence tags (ESTs). Many abundant leaf proteins are present in multiple spots. Functions of over 50% of the abundant leaf proteins are either unknown or hypothetical. Our results show that EST databases in conjunction with peptide mass fingerprints can be used for identifying proteins from organisms with incomplete genome sequence information.  相似文献   

19.
We describe an approach for fractionating complex protein samples prior to two-dimensional gel electrophoresis using reversed-phase high-performance liquid chromatography. Whole lysates of cells and tissue were prefractionated by reversed-phase chromatography and elution with a five-step gradient of increasing acetonitrile concentrations. The proteins obtained at each step were subsequently separated by high-resolution two-dimensional gel electrophoresis (2-DE). The reproducibility of this prefractionation technique proved to be optimal for comparing 2-DE gels from two different cell states. In addition, this method is suitable for enriching low-abundance proteins barely detectable by silver staining to amounts that can be detected by Coomassie blue and further analyzed by mass spectrometry.  相似文献   

20.
Differential 2-DE (DIGE) is a widely applied tool for the quantitative analysis of differentially represented proteins. The method involves covalent minimal labeling of proteins prior to their electrophoretic separation using CyDye DIGE Fluor minimal dyes. This methodology creates two different species per protein, the labeled (approx. 1-2%) and unlabeled (approx. 98-99%) ones, which differ in their molecular masses by 434-464 Da, depending on the attached dye. DIGE followed by automated spot picking according to the CyDye coordinates misses in many instances the exact positions where the maximum amounts of the considered proteins are located. This fact leads to a loss in sensitivity of the subsequent MALDI-MS analyses and results in a reduced reliability of protein identification and sequence coverage. In this paper, the migration differences of labeled and unlabeled species are quantified together with the impact of this effect on the certainty of protein identification and sequence coverage investigating proteins up to 90 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号