首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co-condensation of atoms of Re, Ru, Rh, Ir and Pt with oxalyl chloride gives metal chloro-carbonyl derivatives which may be used as precursors to the compounds [Re(CO)4Cl]2, [Ru(PMe3)3(CO)Cl2], α-[Ru(CO)3Cl(μ-Cl)]2, [Ru(PPh3)2(CO)2Cl2], [Rh(CO)2(μ-Cl)]2, [Rh(PPh3)2COCl], [Ir(PPh3)(CO)2Cl3] and cis-Pt(CO)2Cl2. Molybdenum atoms with oxalyl chloride give molybdenum-chloro derivatives.  相似文献   

2.
研究了在室温离子液体以及室温离子液体/有机溶剂复合介质体系中, Rh(PPh3)3Cl, Ru(PPh3)3Cl2等催化烯烃与三乙氧基硅烷的硅氢加成反应. 实验结果表明, 在乙二醇二甲醚/离子液体1-丁基-3-甲基咪唑六氟磷酸盐(BMImBF6) (V/V=1/4)介质中, 于90 ℃下, 己烯与三乙氧基硅烷反应的转化率为100%, β加成物的选择性可达89.0%. 而用Rh(PPh3)3Cl作为反应的催化剂, 在纯离子液体BMImPF6中, 就可以高效催化烯烃与三乙氧基氢硅烷的加成反应. 过渡金属Rh(PPh3)3Cl, Ru(PPh3)3Cl2催化剂/离子液体BMImPF6催化体系, 不仅解决了产物与催化剂分离困难这一难题, 同时, 离子液体BMImPF6的存在提高了过渡金属Rh(PPh3)3Cl, Ru(PPh3)3Cl2催化硅氢加成反应的活性, 特别是β加成物的选择性. 反应结束后, 催化剂/离子液体与产物易于分离, 并且可以重复使用.  相似文献   

3.
Summary The complexes Pd(PTH)2Cl2 · 3.5 H2O, Pd(PTH)3(PPh3), Ru(PTH)2(PPh3)Cl2, Ru(PTH)2(PPh3)Cl3, Rh(PTH)2(PPh3)Cl and Rh(PT)Cl2 · 0.5 H2O, where PTH isN-phenylcarbamoylpyrrole-2-thiocarboxamide, have been prepared and characterised by magnetic and spectral (i.r., u.v. and visible) studies.  相似文献   

4.
《Polyhedron》1987,6(11):2009-2018
A new bidentate ligand {2-(diphenylphosphino)ethyl}benzylamine(DPEBA) was synthesized and characterized based on the IR, mass and 1H, 13C and 31P NMR spectra. Various complexes of platinum group metal ions and Ni(II) and Co(II) ions with the ligand were synthesized. Reaction of RuCl2(PPh3)3 or RuCl2(Me2SO)4 with the ligand DPEBA, resulted in formation of a penta-coordinate, Ru(II) species of the composition [RuCl(DPEBA)2]Cl. Carbonylation of [RuCl(DPEBA)2]Cl gave an octahedral carbonyl complex of the type [RuCl(CO)(DPEBA)2]Cl. The reaction of RuCl3·3H2O or RuCl3(AsPh3)2MeOH with a twofold excess of the ligand gave an octahedral Ru(III) cationic species [Ru(DPEBA)2Cl2]Cl. Carbonylation of the Ru(III) complex gave rise to a carbonyl complex [RuCl(CO)(DPEBA)2]Cl2. The ligand DPEBA reacts with cobalt(II) chloride in methanol to give the 1 : 1 complex [Co(DPEBA)Cl2]. A series of Rh(I) complexes [Rh(DPEBA)2Cl], [ RhCl(CO)(DPEBA)] and [Rh(DPEBA)2]Cl were synthesized by the reaction of DPEBA with RhCl(PPh3)3, RhCl(CO)(PPh3)2 and [Rh(COD)Cl]2, respectively. Reaction of [Ir(COD)Cl]2 and IrCl(CO)(PPh3)2 with the ligand DPEBA, gave the square-planar complexes [Ir(DPBA)2]Cl and [Ir(DPEBA)(CO)Cl], respectively. Octahedral cationic complexes of the type [M(DPEBA)2Cl2]Cl (M = Rh(III), Ir(III)) were synthesized by the reaction of the ligand DPEBA and rhodium and iridium trichlorides. Reaction of NiCl2·6H2O with DPEBA in 1 : 2 molar equivalents, in boiling butanol gave an octahedral neutral complex [Ni(DPEBA)2Cl2] which readily rearranges to the square-planar complex [Ni(DPEBA)2]Cl2 in methanol. Reaction of Pd(II) and Pt(II) chlorides with DPEBA gave square-planar, cationic complexes of the type [M(DPEBA)2Cl]Cl (M = Pd, Pt). All the complexes were characterized on the basis of their analytical and spectral data.  相似文献   

5.
Nitrosobenzene is converted into azoxybenzene in alcoholic media in the presence of Ru(CO)3(PPh3)2 as catalyst and under an inert atmosphere; Fe(CO)3(PPh3)2 and palladium complexes such as PdL2Cl2 (L  PhNO, p-MeC6H4NH2, PPh3) and Pd3(CO)3(PPh3)4, are less active as catalysts. Under CO pressure and with Ru(CO)3(PPh3)2 as catalyst, nitrosobenzene is converted into azobenzene and aniline, while azoxybenzene gives azobenzene.  相似文献   

6.
Thiocyanogen and selenocyanogen react with Ru(CO)3(PPh3)2 to give respectively the complexes Ru(CO)2(PPh3)2(NCS)2 and Ru(CO)2(PPh3)2(NCSe)2. (M—NCS and M—SCN represent N- and S-thiocyanato groups, M—NCSe and M—SeCN represent N- and Se-selenocyanato groups respectively, while M—CNS indicates the bridging coordination mode of thiocyanate.) Only the thiocyanogen reacts with Ru3(CO)12 giving [Ru(CO)2(CNS)2]n, which dissolves in hot coordinating solvents, such as pyridine, to form Ru(CO)2(py)2(NCS)2. Selenocyanogen is less effective than thiocyanogen in the oxidative addition reactions with rhodium(I) and iridium(I) complexes; in fact selenocyanogen does not react with Rh(CO)(PPh3)2Cl while with Ir(CO)(PPh3)2Cl the former gives Ir(CO)(PPh3)2(SeCN)2Cl by an equilibrium reaction. The coordination number of the metal and the charge on the complex do not change the bonding mode of the thiocyanate and selenocyanate groups in the iridium(III) complexes; in the Ir(PPh3)2ClX2 and [Ir(Ph2PC2H4PPh2)2X2]+ (X = SCN and SeCN) complexes the pseudohalogens are S- and Se-bonded.The complexes trans-M(PPh3)2(SeCN)2 (M = Pd, Pt) have been obtained by reacting M(PPh3)4 with selenocyanogen.  相似文献   

7.
Dehydrogenating complexation of borolenes with carbonyls (Ru3(CO)12, Os3(CO)12), Wilkinson's catalyst (RhCl(PPh3)3) and related compounds (RuCl2(PPh3)3, RuHCl(PPh3)3, OSCl2(PPh3)3), and (η6-arene)ruthenium complexes (Ru(η-C6H6)(η4-C6H8), [Ru(η-C6H6)Cl2]2, [Ru(η-C6-Me6)Cl2]2) leads to the (η5-borole)metal complexes of Ru, Os, and Rh. Inter alia, the preparation of the complexes Ru(CO)35-C4H4BF) (R = Ph, OMe, Me), Os(CO)3L (L = η5-C4H4BPh), MHClL(PPh3)2 (M = Ru, Os), RhClL(PPh3)2, and RuL(η-C6R6) (R = H, Me) is described. The structures of RuHClL(PPh3)2 and RhClL(PPh3)2 have been determined by X-ray diffraction analysis.  相似文献   

8.
Summary The rhodium(I) carbonyl compounds [Rh(CO)L22] [BF4]. 1/2CH2Clnn2 (L = PPh2 or AsPh3) react with the nucleophiles OMe, RCOO (R = Me, Et) under nitrogen to form [Rh(OR)(CO)L2] (1)–(2) and [Rh(OOCR)(CO)L2] (7)–(10), respectively. Addition of [Rh(CO)2(PPh3)2]-[BF 4] to OMe under nitrogen produces [Rh(COOMe)-(CO) (PPh3)2]-MeOH (3), whilst reactions of [Rh(CO)-(PPh3)2] [BF4]·1/2CH2Cl2 and [Rh(CO)2(PPh3)2] [BF4] with OR- (R = Me, Et or n-Pr) in the presence of CO produce [Rh(COOR)(CO)2(PPh3)2] (4)–(6). The products have been characterised by i.r., 1H, 31P, 13Cn.m.r. spectroscopy and elemental analysis.  相似文献   

9.
Formyl fluoride reacts with metal carbonyl anions in a manner similar to acetic formic anhydride. Although formyl complexes may have been formed as unstable intermediates, no neutral formyl complexes could be isolated but rather the expected decomposition products, the metal carbonyl hydrides or ?imers, were produced. The attempted oxidative addition of formyl fluoride to various coordinately unsaturated metal complexes also did not result in the formation of formyl derivatives. HF adducts were obtained from the reaction ?fIr(CO)Cl(PR3)2 or M(PPh3)4 (M Pt or Pd) with formyl fluoride whereas Ru(NO)Cl(PPh3)2 and Rh(PPh3)3 Cl give the CO complexes Ru(NO)(CO)Cl(PPh3)2 and Rh(CO)Cl(PPh3)2, respectively.  相似文献   

10.
Reaction of Ru(CO)Cl(CHCHR)(PPh3)2 or Ru(CO)Cl(CHCHR)(PPh3)2L (L = py, Me2Hpz) with 1 equivalent of t-butyl isocyanide gives the alkenyl derivatives Ru(CO)Cl(CHCHR)(PPh3)2(t-BuNC). When an excess of isocyanide is used, further reaction results in intramolecular CO insertion to yield η1-acyl complexes [Ru(COCHCHR) (t-BuNC)3(PPh3)2]Cl. Related complexes were obtained from [Ru(CO)(CHCHR)(MeCN)2(PPh3)2]PF6 and an excess of isocyanide.  相似文献   

11.
Synthetic procedures are described that allow access to the new complexes cis-[Mo2O5(apc)2], cis-[WO2(apc)2], trans-[UO2(apc)2], [Ru(apc)2(H2O)2], [Ru(PPh3)2(apc)2], [Rh(apc)3], [Rh(PPh3)2(apc)2]ClO4, [M(apc)2], [M(PPh3)2(apc)]Cl, [M(bpy)(apc)]Cl (M(II) = Pd, Pt), [Pd(bpy)(apc)Cl], [Ag(apc)(H2O)2] and [Ir(bpy)(Hapc)2]Cl3, where Hapc, is 3-aminopyrazine-2-carboxylic acid. These complexes were characterized by physico-chemical and spectroscopic techniques. Both Hapc and several of its complexes display significant anticancer activity against Ehrlich ascites tumour cells (EAC) in albino mice.  相似文献   

12.
The reactions of phosphonium‐substituted metallabenzenes and metallapyridinium with bis(diphenylphosphino)methane (DPPM) were investigated. Treatment of [Os{CHC(PPh3)CHC(PPh3)CH}Cl2(PPh3)2]Cl with DPPM produced osmabenzenes [Os{CHC(PPh3)CHC(PPh3)CH}Cl2{(PPh2)CH2(PPh2)}]Cl ( 2 ), [Os{CHC(PPh3)CHC(PPh3)CH}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 3 ), and cyclic osmium η2‐allene complex [Os{CH?C(PPh3)CH?(η2‐C?CH)}Cl2{(PPh2)CH2(PPh2)}2]Cl ( 4 ). When the analogue complex of osmabenzene 1 , ruthenabenzene [Ru{CHC(PPh3)CHC(PPh3)CH}Cl2(PPh3)2]Cl, was used, the reaction produced ruthenacyclohexadiene [Ru{CH?C(PPh3)CH?C(PPh3)CH}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 6 ), which could be viewed as a Jackson–Meisenheimer complex. Complex 6 is unstable in solution and can easily be convert to the cyclic ruthenium η2‐allene complexes [Ru{CH?C(PPh3)CH?(η2‐C?CH)}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 7 ) and [Ru{CH?C(PPh3)CH?(η2‐C?CH)}Cl2{(PPh2)CH2(PPh2)}2]Cl ( 8 ). The key intermediates of the reactions have been isolated and fully characterized, further supporting the proposed mechanism for the reactions. Similar reactions also occurred in phosphonium‐substituted metallapyridinium [OsCl2{NHC(CH3)C(Ph)C(PPh3)CH}(PPh3)2]BF4 to give the cyclic osmium η2‐allene‐imine complex [OsCl2{NH?C(CH3)C(Ph)?(η2‐C?CH)}{(PPh2)CH2(PPh2)}(PPh3)]BF4 ( 11 ).  相似文献   

13.
The reactions of [Ru(H)(Cl)(CO)(PPh3)3] with 3,5-di-tert-butyl-o-benzoquinone (dbq) and 3,4,5,6-tetrachloro-o-benzoquinone (tcq) have afforded the corresponding semiquinone complexes [RuII(dbsq)(Cl)(CO)(PPh3)2] and [RuII(tcsq)(Cl)(CO)(PPh3)2], respectively. The reaction of [Ru(H)2(CO)(PPh3)3] with tcq has furnished [RuII(tcsq)(H)(CO)(PPh3)2]. Structure determination of [Ru(dbsq)(Cl)(CO)(PPh3)2] has revealed that it is a model semiquinonoid chelate with two equal C---O lengths ( 1.291(6) and 1.296(6) Å). The complexes are one-electron paramagnetic (1.85μB) and their EPR spectra in fluid media display a triplet structure (g2.00) due to superhyperfine coupling with two trans-31P atoms (Aiso17 G). The stretching frequency of the CO ligand increases by 20 cm−1 in going from [Ru(dbsq)(Cl)(CO)(PPh3)2] to [Ru(tcsq)(Cl)(CO)(PPh3)2] consistent with electron withdrawal by chloro substituents. For the same reason the E1/2 values of the cyclic voltammetric quinone/semiquinone and semiquinone/catechol couples undergo a shift of 500 mV to higher potentials between [Ru(dbsq)(Cl)(CO)(PPh3)2] and [Ru(tcsq)(Cl)(CO)(PPh3)2].  相似文献   

14.
Reactions of 2-(arylazo)aniline, HL-NH2 [H represents the dissociable protons upon complexation and HL-NH2 is p-RC6H4NNC6H4-NH2; R = H for HL1-NH2; CH3 for HL2-NH2 and Cl for HL3-NH2] with Ru(H)(CO)(PPh3)3Cl and Ru(CO)3(PPh3)2 afforded products of compositions [(HL-NH)Ru(CO)Cl(PPh3)2] and [(L-NH)Ru(PPh3)2(CO)], respectively. All the complexes were characterized unequivocally. The X-ray structures of the complexes 4c and 5c have been determined. The cyclic volatammograms exhibited one reversible oxidative response in the range of 0.56–0.16 V versus SCE for [(L-NH)Ru(PPh3)2(CO)] and a quasi reversible oxidative response within 0.56–0.70 V versus SCE for [(HL-NH)Ru(CO)Cl(PPh3)2]. The conversion of ketones to corresponding alcohols has been studied in presence of newly synthesized ruthenium complexes.  相似文献   

15.
Summary Rhodium(I) carbonyl complexes, namely [Rh(CO)2ClL] where L = thiourea (Tu), 1,3-diphenyl-2-thiourea (DTu), dithizone (Dtz), indole (Id), 3-chloropyridine (Clpy), 3-hydroxypyridine (HOpy), 3-methylpyridine (Mepy), 2,5-dimethylpyridine (Me2py) or 2,5-dichloropyridine (Cl2py)] were prepared. [Rh(CO)2Cl(Clpy)2] has also been isolated. In the (Tu) complex, (C-S) occurs at ca. 710cm-1, indicating the presence of a metal-sulphur bond. The carbonyl stretching frequencies in [Rh (CO)2ClL] and [Rh(CO)2CIL2] occur at ca. 2100–1990 and 1830–1800 cm-1, respectively. PPh3 reacts with the complexes to form trans-[Rh(CO)Cl(PPh3)2]. The complexes were characterized by elemental analyses, conductivity measurements and by their i.r. spectra.  相似文献   

16.
The O-perrhenato complexes LnMOReO3 (LnM = Re(CO)5, Rh(PPh3)2(CO), Ir(PPh3)2(CO), Pt(PPh3)2(H), Ru(η5-C5H5)(PPh3)2, Os(PPh3)3(CO)(H), Ir(PPh3)2(CO)(H)(Cl) have been prepared from the corresponding halogeno compounds with AgReO4 or NaReO4, respectively. The spectroscopic data (IR, 1H NMR) indicate that ReO4 is a stronger ligand compared to ClO4, SO3CF3 and BF4.  相似文献   

17.
Substituted phosphines of the type Ph2PCH(R)PPh2 and their PtII complexes [PtX2{Ph2PCH(R)PPh2}] (R = Me, Ph or SiMe3; X = halide) were prepared. Treatment of [PtCl2(NCBut)2] with Ph2PCH(SiMe3)-PPh2 gave [PtCl2(Ph2PCH2PPh2)], while treatment with Ph2PCH(Ph)PPh2 gave [Pt{Ph2PCH(Ph)PPh2}2]Cl2. Reaction of p-MeC6H4C≡CLi or PhC≡CLi with [PtX2{Ph2PCH(Me)PPh2}] gave [Pt(C≡CC6H4Me-p)2-{Ph2PCH(Me)PPh2}] (X = I) and [Pt{Ph2PC(Me)PPh2}2](X = Cl),while reaction of p-MeC6H4C≡CLi with [Pt{Ph2PCH(Ph)PPh2}2]Cl2 gave [Pt{Ph2PC(Ph)PPh2}2]. The platinum complexes [PtMe2(dpmMe)] or [Pt(CH2)4(dpmMe)] fail to undergo ring-opening on treatment with one equivalent of dpmMe [dpmMe = Ph2PCH(Me)PPh2]. Treatment of [Ir(CO)Cl(PPh3)2] with two equivalents of dpmMe gave [Ir(CO)(dpmMe)2]Cl. The PF6 salt was also prepared. Treatment of [Ir(CO)(dpmMe)2]Cl with [Cu(C≡CPh)2], [AgCl(PPh3)] or [AuCl(PPh3)] failed to give heterobimetallic complexes. Attempts to prepare the dinuclear rhodium complex [Rh2(CO)3(μ-Cl)(dpmMe)2]BPh4 using a procedure similar to that employed for an analogous dpm (dpm = Ph2PCH2PPh2) complex were unsuccessful. Instead, the mononuclear complex [Rh(CO)(dpmMe)2]BPh4 was obtained. The corresponding chloride and PF6 salts were also prepared. Attempts to prepare [Rh(CO)(dpmMe)2]Cl in CHCl3 gave [RhHCl(dpmMe)2]Cl. Recrystallization of [Rh(CO)(dpmMe)2]BPh4 from CHCl3/EtOH gave [RhO2(dpmMe)2]BPh4. Treatment of [Rh(CO)2Cl2]2 with one equivalent of dpmMe per Rh atom gave two compounds, [Rh(CO)(dpmMe)2]Cl and a dinuclear complex that undergoes exchange at room temperature between two formulae: [Rh2(CO)2(μ-Cl)(μ-CO)(dpmMe)2]Cl and [Rh2(CO)2-(μ-Cl)(dpmMe)2]Cl. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Treatment of [Ru(PPh3)3Cl2] with one equivalent of tridentate Schiff base 2-[(2-dimethylamino-ethylimino)-methyl]-phenol (HL) in the presence of triethylamine afforded a ruthenium(III) complex [RuCl3(κ2-N,N-NH2CH2CH2NMe2)(PPh3)] as a result of decomposition of HL. Interaction of HL and one equivalent of [RuHCl(CO)(PPh3)3], [Ru(CO)2Cl2] or [Ru(tht)4Cl2] (tht = tetrahydrothiophene) under different conditions led to isolation of the corresponding ruthenium(II) complexes [RuCl(κ3-N,N,O-L)(CO)(PPh3)] (2), [RuCl(κ3-N,N,O-L)(CO)2] (3), and a ruthenium(III) complex [RuCl2(κ3-N,N,O-L)(tht)] (4), respectively. Molecular structures of 1·CH2Cl2, 2·CH2Cl2, 3 and 4 have been determined by single-crystal X-ray diffraction.  相似文献   

19.
1,2,3,4,7,7-Hexafluorobicyclo[2.2.1]heptadiene (1) and 2,3-bis(trimethyltin)-1,4,5,6,7,7-hexafluorobicyclo[2.2.1]hepta-2,5-diene (2) react with [M(Ph3P)4] (M = Pt, Pd) to afford air-stable adducts. 2,3-Dichloro-1,4,5,6,7,7-hexafluorobicyclo[2.2.1]hepta-2,5-diene (3) gives only [PtCl2(PPh3)2] with [Pt(Ph3P)4], but a low yield of an adduct was obtained with [Pd(PPh3)4]. The diene 1 also reacts with Fe(CO)5 to form the complex [(C7H2F6)Fe(CO)4], and with [Rh(C2H4)2(acac)] to give [(C7H2F6)Rh(acac)] in which the diene acts as a bidentate ligand. Similar products could not be isolated from the reactions of 2 and 3. A stable adduct, believed to be [{C7F6(SnMe3)2}Rh(CO)2(μ-Cl)2Rh(CO)2] has been isolated from the reaction between 2 and [Rh(CO)2Cl]2. This adduct reacts with PPh3 to give the bridge-cleavage product [{C7F6(SnMe3)2}RhCl(CO)(PPh3)2]. Reaction of 1 with [Rh(CO)2Cl]2 gives an unstable adduct which could not be isolated, and 2 does not react at room temperature. The chloro derivative 3 reacts with [PdCl2(PhCN)2] to give the adduct [(C7F6Cl2)PdCl(PhCN)], but 1 and 2 do not react under similar conditions. Stable substitution products [(C7F6R2)M] (R = H, M = Fe(CO)2(η-C5H5); R = SnMe3, M = Fe(CO)2(η-C5H5), Mn(CO)5, Ir(CO)2(PPh3)2, Rh(CO)2(PPh3)2; R = Cl, M = Ir(CO)2(PPh3)2, Rh(CO)2(PPh3)2) have been isolated from the reactions of the dienes with carbonylmetal anions. Insertion of the CHCH bond occurs when 1 is heated with [MnMe(CO)5] to give [{C7F6H2C(O)Me}Mn(CO)4], and this, on reaction with either PPh3 or [Pt(PPh3)4], gives [(C7F6H2COMe)Mn(CO)4PPh3].  相似文献   

20.
Corrigendum     
Reactions of NaMn(CO)3 with RuCl2(PMe3)4, RuCl2(dppm)2 and RuCl2(PPh3)3 lead either to an ionic species [Ru2Cl3(PMe3)6]+[Mn(CO)5]? or to metal—metal bonded RuMn compounds such as RuMn(μ-CO)2(CO)3(μ-dppm)2 Cl, and, quite unexpectedly, to the μ-phosphido complex RuMn(μ-PPh2)(CO)6(PPh3)2 via a hydride intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号