首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We study the nonlinear σ-model in an external magnetic field applied on curved surfaces with rotational symmetry. The Euler–Lagrange equations derived from the Hamiltonian yield the double sine-Gordon equation (DSG) provided the magnetic field is tuned with the curvature of the surface. A 2π skyrmion appears like a solution for this model and surface deformations are predicted at the sector where the spins point in the opposite direction to the magnetic field. We also study some specific examples by applying the model on three rotationally symmetric surfaces: the cylinder, the catenoid and the hyperboloid.  相似文献   

2.
The analysis of a viscous fluid flow and heat transfer is carried out under the influence of a constant applied magnetic field over a curved stretching sheet. Heat transfer analysis is carried out for two heating processes, namely, prescribed surface temperature (PST) and prescribed heat flux (PHF). The equations governing the flow are modeled in a curvilinear coordinate system (r, s, z). The nonlinear partial differential equations are then transformed to nonlinear ordinary differential equations by using similarity transformations. The obtained system of equations is solved numerically by a shooting method using Runge-Kutta algorithm. The interest lies in determining the influence of dimensionless radius of curvature on the velocity, temperature, skin friction, and rate of heat transfer at the wall prescribed by the Nusselt number. The effects of Hartmann number are also presented for the fluid properties of interest.  相似文献   

3.
The paper presents an investigation of the influence of thermophoresis on MHD mixed convective heat and mass transfer of a viscous, incompressible and electrically conducting fluid along a vertical flat plate with radiation effects. The plate is permeable and embedded in a porous medium. To describe the deviation from the Darcy model the Forchheimer flow model is used. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity transformation. The nonlinear ordinary differential equations are linearized by using quasilinearization technique and then solved numerically by using implicit finite difference scheme. The numerical results are analyzed for the effects of various physical parameters such as magnetic parameter Ha, mixed convection parameter Ra d /Pe d , Reynolds number Red, radiation parameter R, thermophoretic parameter τ, Prandtl number Pr, and Schmidt number Sc. The heat transfer coefficient is also tabulated for different values of physical parameters.  相似文献   

4.
The field distribution of a light wave near a magnetic defect in a one-dimensional photonic crystal is analyzed. It is shown that, by properly varying the magnetic defect thickness or the parameters of the photonic crystal surrounding the defect, one can create a situation where the electric field of a light wave will be localized predominantly inside the magnetic layer or, conversely, in the immediate vicinity of the layer surface. This opens up possibilities for optimizing the Q factor of a magnetic microcavity in the presence of dissipation in the magnetic layer and, hence, for enhancing the linear and nonlinear magneto-optical effects. The possibility of separating the contributions from the surface and volume of the magnetic material to the nonlinear magnetooptical properties by properly varying the field distribution over the defect thickness is discussed.  相似文献   

5.
The hydromagnetic convective boundary layer flow past a stretching porous wall embedded in a porous medium with heat and mass transfer in the presence of a heat source and under the influence of a uniform magnetic field is studied. Exact solutions of the basic equations of motion, heat and mass transfer are obtained after reducing them to nonlinear ordinary differential equations. The reduced equations of heat and mass transfer are solved using a confluent hypergeometric function. The effects of the flow parameters such as a suction parameter (N), magnetic parameter (M), permeability parameter (K p ), wall temperature parameter (r), wall concentration parameter (n), and heat source/sink parameter (Q) on the dynamics are discussed. It is observed that the suction parameter appears in the boundary condition ensuring the variable suction at the surface. Transverse component of the velocity increases only when magnetic field strength exceeds certain value, but the thermal boundary layer thickness and concentration distribution increase for all values. Results presented in this paper are in good agreement with the work of the previous author and also in conformity with the established theory.  相似文献   

6.
《Physics letters. A》1997,229(1):37-43
The initial value problem of Burgers' equation on a branching structure consisting of N semi-infinite line segments radiating from a common junction is solved in terms of a set of N linear integral equations of Volterra type involving N + 1 unknowns, coupled by a single nonlinear constraint ensuring current conservation at the junction. We outline an iterative scheme for solving these integral equations, and illustrate their application to physical problems by considering a simple phenomenological model of road traffic.  相似文献   

7.
The influence of a plane electric field on the phase states of barium titanate thin films under the conditions of forced deformation has been studied. The field dependence of a complete set of material constants has been taken in the region of the c-phase, where polarization losses are absent. The material constants are calculated using equations of the piezoelectric effect derived by linearizing the nonlinear equations of state from the phenomenological; theory for barium titanate. It has been shown that there is a critical value of the field at which the electromechanical coupling coefficient reaches a maximum.  相似文献   

8.
We investigate the effects of nonlinear couplings and external magnetic field on the thermal entanglement in a two-spin-qutrit system by applying the concept of negativity. It is found that the nonlinear couplings favor the thermal entanglement creating. Only when the nonlinear couplings ∣K∣ are larger than a certain critical value does the entanglement exist. The dependence of the thermal entanglement in this system on the magnetic field and temperature is also presented. The critical magnetic field increases with the increasing nonlinear couplings constant ∣K∣. And for a fixed nonlinear couplings constant, the critical temperature is independent of the magnetic field B.  相似文献   

9.
The dynamics of a two dimensional chain like structure of vortices is studied in the model of nonlinear time dependent Ginzburg–Landau equations (TDGL). The transition between different linear chains of vortices in a superconducting homogeneous slab with both surfaces in contact with a thin layer of metallic material is analyzed. The magnetization curve, vortex number, vortex configurations and modulus of the order parameter are studied as a function of the external magnetic field. We show how these vortex configurations are affected by the extrapolation length b (de Gennes boundary conditions), Ψ due to the proximity effects in a mesoscopic sample of area dx × dy, where dy = 60ξ(0) and dx varies discretely from 30ξ(0) to 12ξ(0). Possible connection with recent theoretical results in a two dimensional system of charged particles is discussed.  相似文献   

10.
An efficient method is proposed for the self-consistent calculation of Landau levels of a quasi-two-dimensional hole gas at a GaAs/AlGaAs heterostructure in a perpendicular magnetic field. The method is based on transforming the Schroedinger and Poisson equations to a system of nonlinear differential equations which are then spatially discretized and solved by the method of relaxation. The method proposed is used to model the optical spectra for recombination of the quasi-two-dimensional hole gas with electrons localized at a dlayer of donors in an isolated p-type heterojunction. Particular attention is paid to effects associated with the dependence of the wave functions and shape of the potential well on the magnetic field, which have not been considered before. Fiz. Tverd. Tela (St. Petersburg) 40, 1117–1125 (June 1998)  相似文献   

11.
It is found that nonlinear ion drift waves in a plasma with ion temperature much larger than the electron temperature (Ti?Te) satisfy certain well-known model evolution equations. The nonlinear development of the ion waves as well as their turbulent behaviour is therefore known in the light of these equations.  相似文献   

12.
We study tunneling of a Bose-Einstein condensates confined in a effective double-well potential (a single well with a spatially magnetic modulated scattering length, actually), called pseudo double-well trap, in which the interaction of atoms characterized by the s-wave scattering length a s can be widely tuned with a magnetic-field Feshbach resonance. As a result, corresponding to different nonlinear parameters, the energy levels of the nonlinear Schrödinger equation can have complex structures in their dependence on the bias between the wells. We discuss the emergence of looped levels, which lead to a breakdown of adiabaticity that the Landau-Zener transition probability does not vanish even in the adiabatic limit. Moreover, we also find that the Landau-Zener tunneling in the pseudo trap show many striking properties distinguished from that of the real trap model (where the barrier is created by the external potential). Possible experimental observation in an opticallyinduced photonic lattices in a photorefractive material is suggested.  相似文献   

13.
14.
In this paper, we extend the efficient time-splitting Fourier pseudospectral method to solve the generalized Gross–Pitaevskii (GP) equations, which model the dynamics of spin F = 2 Bose–Einstein condensates at extremely low temperature. Using the time-splitting technique, we split the generalized GP equations into one linear part and two nonlinear parts: the linear part is solved with the Fourier pseudospectral method; one of nonlinear parts is solved analytically while the other one is reformulated into a matrix formulation and solved by diagonalization. We show that the method keeps well the conservation laws related to generalized GP equations in 1D and 2D. We also show that the method is of second-order in time and spectrally accurate in space through a one-dimensional numerical test. We apply the method to investigate the dynamics of spin F = 2 Bose–Einstein condensates confined in a uniform/nonuniform magnetic field.  相似文献   

15.
Analytic linearization maps are found for autonomous systems of n coupled Bernoulli equations of a certain class. The class of equations is determined by the requirement that the nonlinear system linearize to its linear part. These equations have applications as models for interacting biological systems.  相似文献   

16.
This paper presents a nonlinear free vibration analysis of the microbeams based on the modified couple stress Euler–Bernoulli beam theory and von Kármán geometrically nonlinear theory. The governing differential equations are established in variational form from Hamilton principle, with a material length scale parameter to interpret the size effect. These partial differential equations are reduced to corresponding ordinary ones by eliminating the time variable with the Kantorovich method following an assumed harmonic time mode. The resulting equations, which form a nonlinear two-point boundary value problem in spatial variable, are then solved numerically by shooting method, and the size-dependent characteristic relations of nonlinear vibration frequency vs. central amplitude of the microbeams are obtained successfully. The comparisons with available published results show that the current approach and algorithm are of good practicability. A parametric study is conducted involving the dependency of the frequency on the length scale parameter along with Poisson ratio, which shows that the nonlinear vibration frequency predicted by the current model is higher than that by the classical one.  相似文献   

17.
We study the nonlinear dynamics of DNA which takes into account the twist-opening interactions due to the helicoidal molecular geometry. The small amplitude dynamics of the model is shown to be governed by a solution of a set of coupled nonlinear Schrödinger equations. We analyze the modulational instability and solitary wave solution in the case. On the basis of this system, we present the condition for modulation instability occurrence and attention is paid to the impact of the backbone elastic constant K. It is shown that high values of K extend the instability region. Through the Jacobian elliptic function method, we derive a set of exact solutions of the twist-opening model of DNA. These solutions include, Jacobian periodic solution as well as kink and kink-bubble solitons.  相似文献   

18.
王晓钢  刘悦  邱孝明 《物理学报》1988,37(10):1718-1728
本文提出并研究了在剪切磁场中非理想MHD流的Rayleigh-Bnard问题的一个模型,得到了关于这个模型的一个新的非线性微分方程组。理论和数值分析表明:这组方程蕴含一个奇异吸引子,它具有不同于Lorenz吸引子的一些新特性;更重要的是,已知的三条通往混沌的道路并存于这个模型之中。应当指出,在迄今所有已知的向混沌态过渡的三条道路共存的模型中,我们的方程组是唯一没有外部周期驱动项的,更直接地体现了非线性确定论系统的“内在”随机件、另外,对这个简单模型进行数值模拟.我们观察到磁力线的随机运动、磁力线重联和磁岛 关键词:  相似文献   

19.
The nonlinear dynamics of the magnetization in a spin-valve structure is investigated. Equations describing the dynamics of the magnetization in such a structure are obtained. The stability of the solution corresponding to a motionless flat domain wall is investigated. The nonlinear domain-wall dynamics are investigated in the approximation of a strong exchange interaction between the magnetic layers and in the approximation of a large magnetostatic energy. In the former case the nonlinear dynamical equations are shown to be similar to the equations describing the dynamics of the magnetization in a weak ferromagnet, and in the latter case they are similar to the equations of motion of a magnetic vortex (i.e., a vertical Bloch line) in a domain wall. Zh. éksp. Teor. Fiz. 116, 1365–1374 (October 1999)  相似文献   

20.
Nonlinear vortical structures and soliton formation are investigated for electron temperature gradient instability in a two-electron temperature non-Maxwellian magnetoplasma. The inhomogeneity in magnetic field is also considered. A new set of nonlinear equations, using transport equations of Braginskii”s model, are formulated to study the nonlinear structures. A modified linear dispersion relation of coupled electron temperature gradient (ETG) mode and electron acoustic wave is derived. The ETG instability is found to increase with increase in ηec value that increases with sharp density gradients. The results are applied to auroral region of earth's magnetosphere and the calculated values of the nonlinear electric field of fast solitary waves are found to be in agreement with the Viking satellite observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号