首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vien  V. V.  Long  H. N. 《Physics of Atomic Nuclei》2019,82(2):168-182

We build a simple Standard Model extension based on T7 flavor symmetry which accommodates lepton mass, mixing with non-zero θ13, and CP violation phase. The lepton mixing matrix is obtained from three triplets and one singlet under T7 symmetry, and the charged-lepton mass is derived through the spontaneous symmetry breaking by just one T7 triplet (φ), while neutrinos get small masses from one SU(2) L doublet and two SU(2)L singlets in which one is in 1 and the two others are in 3 and 3* under T7, respectively. There exist viable parameters of the model that predict the effective Majorana neutrino mass with values mβ ≃ 10−2 eV and 4.95 × 10−2 eV as well as a lightest neutrino mass mlight ≃ 4.97 × 10−3 eV and 1.61 × 10−3 eV for the normal and inverted neutrino mass hierarchies, respectively. The model also gives a remarkable prediction of Dirac CP violation δCP ≃ 303.3° in the normal hierarchy and δCP ≃ 56.69° in the inverted hierarchy which is still missing in the neutrino mixing matrix. The quark mixing angles of the model are closed to the experimental data, whereas the obtained values for the quark masses are consistent with with the experimental data at the tree level.

  相似文献   

2.
《Physics letters. [Part B]》1986,166(4):473-478
A search for decays of heavy neutrinos was conducted by the CHARM Collaboration in a prompt neutrino beam produced by dumping 400 GeV protons in a Cu target, and in the CERN wide-band neutrino beam produced by 400 GeV primary protons. No candidate event was found. In the beam-dump experiment heavy neutrinos have been assumed to be produced by mixing in charmed D meson decays. Neutrinos decaying into e+eve, μ+evμ, and μ+μvμ were searched for. Limits of |Uei|2, |Uμi|2 < 10−7 were obtained for neutrino masses around 1.5 GeV. In the wide-band experiment heavy neutrinos were assumed to be produced by neutral-current neutrino interactions in the CHARM calorimeter. Here a search was made for neutrinos decaying into a μ and hadrons. This experiment is sensitive to decays of neutrinos with mass in the range 0.5–2.8 GeV with limits of |Uμi|2 < 3 × 10−4 for masses around 2.5 GeV. These measurements extend our previous results in the mass range 10–400 MeV.  相似文献   

3.
《Physics letters. [Part B]》1986,167(3):295-300
Scalar neutrinos and massive Dirac neutrinos in the mass range 2–20 GeV have been proposed as candidates to provide the dark matter in the halo of our galaxy. If so, the particles are captured inthe Earth with an efficiency of 10−10 − 10−7. For Dirac neutrinos more massive than about 9 GeV and scalar neutrinos more massive than abour 12 GeV, enough are captured to produce an observable neutrino flux at the surface of the Earth (∼ 10−2 cm−2 s−1 for sneutrinos and ∼ 1.4 × 10−3 cm−2 s−1 for Dirac neutrinos), several orders of magnitude above atmospheric background and above what is observed. Hence stable scalar neutrinos of mass 12–20 GeV or Dirac neutrinos of mass 9–20 GeV cannot be the dominant component of the halo.  相似文献   

4.
We make a global vacuum neutrino oscillation analysis of solar neutrino data, including the seasonal and energy dependence of the recent Super-Kamiokande 708-day results. The best fit parameters for νe oscillations to an active neutrino are δm2=4.42×10−10 eV2, sin22θ=0.93. The allowed mixing angle region is consistent with bi-maximal mixing of three neutrinos. Oscillations to a sterile neutrino are disfavored. Allowing an enhanced hep neutrino flux does not significantly alter the oscillation parameters.  相似文献   

5.
We present measurements of the solar neutrino capture rate on metallic gallium in the Soviet-American gallium experiment (SAGE) over a period of slightly more than half the 22-year solar cycle. A combined analysis of 92 runs over the twelve-year period from January 1990 until December 2001 yields a capture rate of 70.8 ?5.2 +5.3 (stat) ?3.2 +3.7 (sys) SNU for solar neutrinos with energies above 0.233 MeV. This value is slightly more than half the rate predicted by the standard solar model, 130 SNU. We present the results of new runs since April 1998 and analyze all runs combined by years, months, and bimonthly periods beginning in 1990. A simple analysis of the SAGE results together with the results of other solar neutrino experiments gives an estimate of (4.6±1.2)× 1010 neutrinos cm?2 s?1 for the flux of the electron pp neutrinos that reach the Earth without changing their flavor. The flux of the pp neutrinos produced in thermonuclear reactions in the Sun is estimated to be (7.6 ± 2.0) × 1010 neutrinos cm?2 s?1, in agreement with the value of (5.95±0.06)×1010 neutrinos cm?2 s?1 predicted by the standard solar model.  相似文献   

6.
Neutrinos with magnetic moment experience chirality flips while scattering off charged particles. It is known that if neutrino is a Dirac fermion, then such chirality flips lead to the production of sterile right-handed neutrinos inside the core of a star during the stellar collapse, which may facilitate the supernova explosion and modify the supernova neutrino signal. In the present paper we reexamine the production of right-handed neutrinos during the collapse using a dynamical model of the collapse. We refine the estimates of the values of the Dirac magnetic moment which are necessary to substantially alter the supernova dynamics and neutrno signal. It is argued in particular that Super-Kamiokande will be sensitive at least to μ ν Dirac = 10−13μB in case of a galactic supernova explosion. Also we briefly discuss the case of Majorana neutrino magnetic moment. It is pointed out that in the inner supernova core spin flips may quickly equilibrate electron neutrinos with nonelectron antineutrinos if μ ν Majorana ≳ 10−12μB. This may lead to various consequences for supernova physics.  相似文献   

7.
We calculate coherent neutrino and antineutrino flavor transformation in the supernova environment, for the first time including self-consistent coupling of intersecting neutrino and antineutrino trajectories. For neutrino mass-squared difference /deltam2/ = 3 x 10(-3) eV2 we find that in the normal (inverted) mass hierarchy the more tangentially-propagating (radially-propagating) neutrinos and antineutrinos can initiate collective, simultaneous medium-enhanced flavor conversion of these particles across broad ranges of energy and propagation direction. Accompanying alterations in neutrino and antineutrino energy spectra and fluxes could affect supernova nucleosynthesis and the expected neutrino signal.  相似文献   

8.
We examine a phenomenon recently predicted by numerical simulations of supernova neutrino flavor evolution: the swapping of supernova nu(e) and nu(mu,tau) energy spectra below (above) energy E(C) for the normal (inverted) neutrino mass hierarchy. We present the results of large-scale numerical calculations which show that in the normal neutrino mass hierarchy case, E(C) decreases as the assumed effective 2x2 vacuum nu(e)<==>nu(mu,tau) mixing angle (approximately theta13) is decreased. In contrast, these calculations indicate that E(C) is essentially independent of the vacuum mixing angle in the inverted neutrino mass hierarchy case. With a good neutrino signal from a future galactic supernova, the above results could be used to determine the neutrino mass hierarchy even if theta13 is too small to be measured by terrestrial neutrino oscillation experiments.  相似文献   

9.
《Nuclear Physics B》1998,524(3):505-523
We consider the “standard” spectrum of the active neutrinos (characterized by strong mass hierarchy and small mixing) with additional sterile neutrino, vs. The sterile neutrino mixes strongly with the muon neutrino, so that vμvs oscillations solve the atmospheric neutrino problem. We show that the parametric enhancement of the vμvs oscillations occurs for the high energy atmospheric neutrinos which cross the core of the Earth. This can be relevant for the anomaly observed by the MACRO experiment. Solar neutrinos are converted both to vμand vs. The heaviest neutrino (≈ vτ) may compose the hot dark matter of the Universe. The phenomenology of this scenario is elaborated and crucial experimental signatures are identified. We also discuss properties of the underlying neutrino mass matrix. 1998 Published by Elsevier Science B.V.  相似文献   

10.
We investigate baryogenesis in the ν  MSM, which is the Minimal Standard Model (MSM) extended by three right-handed neutrinos with Majorana masses smaller than the weak scale. In this model the baryon asymmetry of the universe (BAU) is generated via flavour oscillation between right-handed neutrinos. We consider the case when BAU is solely originated from the CP violation in the mixing matrix of active neutrinos. We perform analytical and numerical estimations of the yield of BAU, and show how BAU depends on mixing angles and CP violating phases. It is found that the asymmetry in the inverted hierarchy for neutrino masses receives a suppression factor of about 4% comparing with the normal hierarchy case. It is, however, pointed out that, when θ13=0θ13=0 and θ23=π/4θ23=π/4, baryogenesis in the normal hierarchy becomes ineffective, and hence the inverted hierarchy case becomes significant to account for the present BAU.  相似文献   

11.
The diffractive production of charmed strangeD s * and possiblyD s mesons by neutrinos and antineutrinos on nucleons in hydrogen, deuterium and neon targets is observed. The slope parameter of thet distribution is 3.3±0.8 (GeV)?2. The production rate per charged current neutrino interaction with an isoscalar target times the D s + →φτ+ branching fraction is (1.03±0.27)×10?4.  相似文献   

12.
《Physics letters. [Part B]》1988,215(3):593-596
We use well established data on SN1987A to restrict the coupling gee of the majoron to electronic neutrinos in the Gelmini-Roncadelli model. We exclude values from 10−4 down to 3×10−6. This range is complementary to the expected laboratory limits from next-round experiments, gee⩽10−4. If this laboratory bound is reached, we may place the stringent limit gee ⩽3 ×10 −6 on the majoron coupling.  相似文献   

13.
We show that a very precise neutrino/anti-neutrino event separation is not mandatory to cover the physics program of a low energy neutrino factory and thus non-magnetized detectors like water Cerenkov or liquid Argon detectors can be used. We point out, that oscillation itself strongly enhances the signal to noise ratio of a wrong sign muon search, provided there is sufficiently accurate neutrino energy reconstruction. Further, we argue that apart from a magnetic field, other means to distinguish neutrino from anti-neutrino events (at least statistically) can be explored. Combined with the fact that non-magnetic detectors potentially can be made very big, we show that modest neutrino/anti-neutrino separations at the level of 50% to 90% are sufficient to obtain good sensitivity to CP violation and the neutrino mass hierarchy for sin213>10−3sin22θ13>10−3. These non-magnetized detectors have a rich physics program outside the context of a neutrino factory, including topics like supernova neutrinos and proton decay. Hence, our observation opens the possibility to use a multi-purpose detector also in a neutrino factory beam.  相似文献   

14.
Marc Dixmier 《Pramana》1994,43(6):453-465
We suggest a new answer to the problem of the solar neutrinos: a neutrino-photon interaction that would cause the neutrinos to disappear before they leave the sun or make them lose energy towards detection thresholds. We calculate the available energy in the system of the centre of mass, and show that the photons may be endowed with a pseudo-cross-section in the system of the sun. Under the assumption of an absorption, made to simplify the neutrino transport calculation, the chlorine experiment yields:σ a =1.8( −1.0 +0.7 )*10−9 barn, which is close tog β/(ℏc)=4·49*10−9 barn. The escape probability is substantially larger for the gallium neutrinos than for the chlorine neutrinos. Thermal radiation in the core of a supernova is suppressed by electrical conductivity, therefore the neutrinos from SN1987A could escape; they interacted with the photon piston in the outer layers of the supernova and the interaction has to be a scattering. The cosmological implications of a neutrino-photon interaction are discussed; Hubble’s constant may have to be modified. The case of an elastic scattering between neutrino and photon is discussed in more detail. An erratum to this article is available at .  相似文献   

15.
We consider sterile neutrinos with rest masses 0.2 GeV and with vacuum flavor mixing angles θ2>10−8 for mixing with τ-neutrinos, or 10−8<θ2<10−7 for mixing with muon neutrinos. Such sterile neutrinos could augment core collapse supernova shock energies by enhancing energy transport from the core to the vicinity of the shock front. The decay of these neutrinos could produce a flux of very energetic active neutrinos, detectable by future neutrino observations from galactic supernova. The relevant range of sterile neutrino masses and mixing angles can be probed in future laboratory experiments.  相似文献   

16.
在利用大亚湾中微子实验装置研究超新星中微子探测过程中, 需要考虑到中微子传播过程中受到各种效应的影响, 包括超新星震荡效应、中微子集体效应、 Mikheyev Smirnov Wolfenstein (MSW)效应和地球物质效应等。 由于超新星中微子受到这些效应, 不同味道的中微子之间振荡会发生变化, 因而利用探测某些超新星中微子事例数之比, 就有可能确定中微子的质量层次,得到中微子混合角θ13和中微子绝对质量的信息。 While detecting supernova neutrinos in the Daya Bay neutrino laboratory, several supernova neutrino effects need to be considered, including the supernova shock effects, the neutrino collective effects, the Mikheyev Smirnov Wolfenstein (MSW) effects, and the Earth matter effects. The phenomena of neutrino oscillation is affected by the above effects. Using some ratios of the event numbers of different supernova neutrinos, we propose some possible methods to identify the mass hierarchy and acquire information about the neutrino mixing angle θ13 and neutrino masses.  相似文献   

17.
The accumulation of relic fourth-generation heavy neutrinos (of mass 50 GeV) in the Earth and the Sun, which is followed by their annihilation, is considered. The most conservative estimates of the fluxes of monochromatic electron, muon, and tau neutrinos and antineutrinos of energy 50 GeV from the annihilation of heavy neutrinos are 4.1×10?6 cm?2 s?1 from Earth’s core and 1.1×10?7 cm?2 s?1 from Sun’s core, whence it follows that an analysis of data from underground neutrino observatories may furnish additional information about the existence of fourth-generation neutrinos. It is shown that, because of kinetic equilibrium between the arrival of cosmic neutrinos and their annihilation, the existence of new U(1) gauge interaction of fourth-generation neutrinos has virtually no effect on the estimates of the annihilation fluxes of electron, muon, and tau neutrinos.  相似文献   

18.
19.
To address the issue of whether tri-bimaximal mixing (TBM) is a softly-broken hidden or an accidental symmetry, we adopt a model-independent analysis in which we perturb a neutrino mass matrix leading to TBM in the most general way but leave the three texture zeros of the diagonal charged lepton mass matrix unperturbed. We compare predictions for the perturbed neutrino TBM parameters with those obtained from typical SO(10) grand unified theories with a variety of flavor symmetries. Whereas SO(10) GUTs almost always predict a normal mass hierarchy for the light neutrinos, TBM has a priori no preference for neutrino masses. We find, in particular for the latter, that the value of |Ue3| is very sensitive to the neutrino mass scale and ordering. Observation of |Ue3|2>0.001 to 0.01 within the next few years would be incompatible with softly-broken TBM and a normal mass hierarchy and would suggest that the apparent TBM symmetry is an accidental symmetry instead. No such conclusions can be drawn for the inverted and quasi-degenerate hierarchy spectra.  相似文献   

20.
We study the single production of heavy neutrinos via the processes ee+νN and eγWN at future linear colliders. As a base of our considerations we take a wide class of models, both with vanishing and non-vanishing left-handed Majorana neutrino mass matrix mL. We perform a model independent analyses of the existing experimental data and find connections between the characteristic of heavy neutrinos (masses, mixings, CP eigenvalues) and the mL parameters. We show that with the present experimental constraints heavy neutrino masses almost up to the collision energy can be tested in the future experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号