首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ceramic BaCe0.8Ho0.2O3-α with orthorhombic perovskite structure was prepared by conventional solid state reaction, and its conductivity and ionic transport number were measured by ac impedance spectroscopy and gas concentration cell methods in the temperature range of 600-1000 ℃ in wet hydrogen and wet air, respectively. Using the ceramics as solid electrolyte and porous platinum as electrodes, the hydrogen-air fuel cell was constructed, and the cell performance at temperature from 600-1000 ℃ was examined. The results indicate that the specimen was a pure protonic conductor with the protonic transport number of 1 at temperature from 600-900 ℃ in wet hydrogen, a mixed conductor of proton and electron with the protonic transport number of 0.99 at 1000 ℃. The electronic conduction could be neglected in this case, thus the total conductivity in wet hydrogen was approximately regarded as protonic conductivity. In wet air, the specimen was a mixed conductor of proton, oxide ion and electron hole. The protonic transport numbers were 0.01-0.09, and the oxide-ionic transport numbers were 0.27-0.32. The oxide ionic conductivity was increased with the increase of temperature, but the protonic conductivity displayed a maximum at 900 ℃, due to the combined increase in mobility and depletion of the carriers. The fuel cell could work stably. At 1000 ℃, the maximum short-circuit current density and power output density were 346 mA/cm^2 and 80 mW/cm^2, respectively.  相似文献   

2.
BaCe0.7Zr0.2Nd0.1O3?α ceramic was prepared by solid state reaction. Phase composition, surface and fracture morphologies of the material were characterized by using XRD and SEM, respectively. Chemical stability against carbon dioxide and water steam at the high temperature was tested. The conductivity and ionic transport number of the material were measured by ac impedance spectroscopy and gas concentration cell methods in the temperature range of 500–900°C in wet hydrogen and wet air, respectively. Using the ceramic as solid electrolyte and porous platinum as electrodes, the hydrogen‐air fuel cell was constructed, and the cell performance at the temperature from 500 to 900°C was examined. The results indicate that BaCe0.7Zr0.2Nd0.1O3?α was a single phase perovskite‐type orthorhombic system, with high density and good chemical stability in carbon dioxide and water steam atmospheres at the high temperature. The conductivity of the material in wet hydrogen and wet air was increased as the temperature rises. In wet hydrogen, the material was a pure protonic conductor with the protonic transport number of 1 from 500 to 600°C, a mixed conductor of proton and electron with the protonic transport number of 0.973–0.955 from 700 to 900°C. In wet air, the material was a mixed conductor of proton, oxide ion and electron hole. The protonic transport numbers were 0.002–0.003, and the oxide ionic transport numbers were 0.124–0.179. The fuel cell could work stably. At 900°C, the maximum short‐circuit current density and power output density were 156 mA·cm?2 and 40 mW·cm?2, respectively.  相似文献   

3.
A novel single lithium‐ion (Li‐ion) conducting polymer electrolyte is presented that is composed of the lithium salt of a polyanion, poly[(4‐styrenesulfonyl)(trifluoromethyl(S‐trifluoromethylsulfonylimino)sulfonyl)imide] (PSsTFSI?), and high‐molecular‐weight poly(ethylene oxide) (PEO). The neat LiPSsTFSI ionomer displays a low glass‐transition temperature (44.3 °C; that is, strongly plasticizing effect). The complex of LiPSsTFSI/PEO exhibits a high Li‐ion transference number (tLi+=0.91) and is thermally stable up to 300 °C. Meanwhile, it exhibits a Li‐ion conductivity as high as 1.35×10?4 S cm?1 at 90 °C, which is comparable to that for the classic ambipolar LiTFSI/PEO SPEs at the same temperature. These outstanding properties of the LiPSsTFSI/PEO blended polymer electrolyte would make it promising as solid polymer electrolytes for Li batteries.  相似文献   

4.
To promote the development of solid‐state batteries, polymer‐, oxide‐, and sulfide‐based solid‐state electrolytes (SSEs) have been extensively investigated. However, the disadvantages of these SSEs, such as high‐temperature sintering of oxides, air instability of sulfides, and narrow electrochemical windows of polymers electrolytes, significantly hinder their practical application. Therefore, developing SSEs that have a high ionic conductivity (>10?3 S cm?1), good air stability, wide electrochemical window, excellent electrode interface stability, low‐cost mass production is required. Herein we report a halide Li+ superionic conductor, Li3InCl6, that can be synthesized in water. Most importantly, the as‐synthesized Li3InCl6 shows a high ionic conductivity of 2.04×10?3 S cm?1 at 25 °C. Furthermore, the ionic conductivity can be recovered after dissolution in water. Combined with a LiNi0.8Co0.1Mn0.1O2 cathode, the solid‐state Li battery shows good cycling stability.  相似文献   

5.
Organic-inorganic hybrid membranes based on poly(ethylene oxide) (PEO) 6.25 wt%/poly(vinylidene fluoride hexa fluoro propylene) [P(VdF-HFP)] 18.75 wt% were prepared by using various concentration of nanosized barium titanate (BaTiO3) filler. Structural characterizations were made by X-ray diffraction and Fourier transform infrared spectroscopy, which indicate the inclusion of BaTiO3 in to the polymer matrix. Addition of filler creates an effective route of polymer-filler interface and promotes the ionic conductivity of the membranes. From the ionic conductivity results, 6 wt% of BaTiO3-incorporated composite polymer electrolyte (CPE) showed the highest ionic conductivity (6 × 10?3 Scm?1 at room temperature). It is found that the filler content above 6 wt% rendered the membranes less conducting. Morphological images reveal that the ceramic filler was embedded over the membrane. Thermogravimetric and differential thermal analysis (TG-DTA) of the CPE sample with 6 wt% of the BaTiO3 shows high thermal stability. Electrochemical performance of the composite polymer electrolyte was studied in LiFePO4/CPE/Li coin cell. Charge-discharge cycle has been performed for the film exhibiting higher conductivity. These properties of the nanocomposite electrolyte are suitable for Li-batteries.  相似文献   

6.
We prepared the polyethylene oxide (PEO)-based composite membrane electrolytes which contained the specialized ionic liquids and the inorganic filler of Li7La3Zr2O12 (LLZO). Mixtures of ionic liquids and tetragonal inorganic fillers were used as additives to prepare composite electrolytes for an application of all solid-state lithium ion batteries (ASLBs). In order to improve the ionic conductivity of composite membranes, we studied the structural change and the electrochemical behaviors as a function of the amounts of solvated ionic liquids (ILs). The addition effect of solvated ILs showed the higher ionic conductivity such as 10?4 S/cm at 55 °C by reducing the crystalline character of polymer based composite, resulting in the enhanced ion conducting property. The hybrid composite membranes were successfully made in flexible form, and have an excellent thermal and electrochemical stability. Finally, the electrochemical performance of the half-cell was evaluated, and it was confirmed that the ion-conducting characteristics were influenced and controlled by the effect of ILs.  相似文献   

7.
The chemically covalent polyethylenimine–siloxane hybrids doped with various amounts of ortho‐phosphoric acid (H3PO4) were prepared and characterized by FTIR, DSC, TGA, and solid‐state NMR spectra. The protonic conduction behavior of these materials was also investigated by means of impedance measurements. These observations indicate that the hydrogen bonding and protonic interactions exist between the dopant H3PO4 and the hybrid host, resulting in an increase in T g of polyethylenimine segments. These hybrids are thermally stable up to 200 °C from TGA analysis. Conductivity studies show an Arrhenius behavior characteristic and the Grotthus‐like proton conduction, and a high conductivity of 10?2–10?3 S cm?1 at 110 °C in dry atmosphere for the hybrid membrane with H3PO4/EI of 0.5. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2135–2144, 2006  相似文献   

8.
Recently, proton conduction has been a thread of high potential owing to its wide applications in fuel-cell technology. In the search for a new class of crystalline materials for protonic conductors, three metalo hydrogen-bonded organic frameworks (MHOFs) based on [Ni(Imdz)6]2+ and arene disulfonates (MHOF1 and MHOF2) or dicarboxylate (MHOF3) have been reported (Imdz=imidazole). The presence of an ionic backbone with charge-assisted H-bonds, coupled with amphiprotic imidazoles made these MHOFs protonic conductors, exhibiting conduction values of 0.75×10−3, 3.5×10−4 and 0.97×10−3 S cm−1, respectively, at 80 °C and 98 % relative humidity, which are comparable to other crystalline metal-organic framework, coordination polymer, polyoxometalate, covalent organic framework, and hydrogen-bonded organic framework materials. This report initiates the usage of MHOF materials as a new class of solid-state proton conductors.  相似文献   

9.
Novel Y‐type polyester 4 containing 5‐methyl‐4‐{5‐(1,2,2‐tricyanovinyl)‐2‐thiazolylazo}resorcinoxy groups as nonlinear optical (NLO) chromophores, which are parts of the polymer backbone, was prepared, and its NLO properties were investigated. Polyester 4 is soluble in common organic solvents such as N,N‐dimethylformamide and dimethylsulfoxide. Polymer 4 shows a thermal stability up to 250 °C from thermogravimetric analysis with glass‐transition temperature obtained from differential scanning calorimetry of approximately 94 °C. The second harmonic generation (SHG) coefficient (d33) of poled polymer film at 1560‐nm fundamental wavelength is 8.12 × 10?9 esu. The dipole alignment exhibits a thermal stability even at 6 °C higher than glass‐transition temperature (Tg), and no significant SHG decay is observed below 100 °C due to the partial main‐chain character of polymer structure, which is acceptable for NLO device applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Electrolytes with high lithium-ion conductivity, better mechanical strength and large electrochemical window are essential for the realization of high-energy density lithium batteries. Polymer electrolytes are gaining interest due to their inherent flexibility and nonflammability over conventional liquid electrolytes. In this work, lithium garnet composite polymer electrolyte membrane (GCPEM) consisting of large molecular weight (Wavg ~?5?×?106) polyethylene oxide (PEO) complexed with lithium perchlorate (LiClO4) and lithium garnet oxide Li6.28Al0.24La3Zr2O12 (Al-LLZO) is prepared by solution-casting method. Significant improvement in Li+ conductivity for Al-LLZO containing GCPEM is observed compared with the Al-LLZO free polymer membrane. Maximized room temperature (30 °C) Li+ conductivity of 4.40?×?10?4 S cm?1 and wide electrochemical window (4.5 V) is observed for PEO8/LiClO4?+?20 wt% Al-LLZO (GCPEM-20) membrane. The fabricated cell with LiCoO2 as cathode, metallic lithium as anode and GCPEM-20 as electrolyte membrane delivers an initial charge/discharge capacity of 146 mAh g?1/142 mAh g?1 at 25 °C with 0.06 C-rate.  相似文献   

11.
Polymer electrolyte systems were prepared for the first time by dissolution of amidomagnesium chlorides in poly(ethylene oxide), (PEO). For the preparation, solutions of (hexamethyldisilylamido)magnesium chloride, (dimethylpyrrolyl)magnesium chloride, (diisopropylamido)magnesium chloride, piperidinomagnesium chloride and morpholinomagnesium chloride were chosen. The composition of these polymer electrolyte systems corresponds to the general formula R2NMgCl·P(EO)n·THF. Most work has been done with the system (hexamethyldisilylamido)magnesium chloride in PEO, (Me3Si)2NMgCl·P(EO)n·THF, with n= 3, 4, 5, or 7. The electrolytes have a soft rubber-like consistency. At 30 °C, electrical conductivities of 10−6–10−5 S/cm were found. The conductivities were measured in the temperature range 20–60 °C. Within this temperature range a linear dependence of the logarithms of the conductivity on the inverse temperature was found and activation energies for the conducting process of 30–60 kJ/mol were calculated. Using those polymer electrolytes with a high content of the amidomagnesium compound, a reversible magnesium deposition takes place by cathodic reduction at potentials below −1.9 V vs. a Ag/AgCl reference electrode. These polymer electrolytes were found to be stable against oxidation up to about −0.3 V vs. Ag/AgCl. Electronic Publication  相似文献   

12.
Indium Tungstate, In2(WO4)3 – an In3+ Conducting Solid Electrolyte Polycrystalline In2(WO4)3 has been electrochemically characterized and unambiguously identified as an In3+ conducting solid electrolyte. By heating, indium tungstate undergoes a phase transition between 250 °C and 260 °C transforming from a monoclinic to an orthorhombic phase for which the conduction properties have been determined. The adopted crystal structure in this high temperature region corresponds to the Sc2(WO4)3 type structure. The electrical conductivity was investigated by impedance spectroscopy in the temperature range 300–700 °C and amounts to about 3.7 · 10–5 Scm–1 at 600 °C with a corresponding activation energy of 59.5 kJ/mol. Polarization measurements indicated an exclusive current transport by ionic charge carriers with a transference number of about 0.99. In dc electrolysis experiments, the trivalent In3+ cations were undoubtedly identified as mobile species. A current transport by oxide anions was not observed.  相似文献   

13.
A new class of proton‐conducting polymer was developed via the sol–gel process from amino‐containing organic–inorganic hybrids by the treatment of poly(allylamine) with 3‐glycidoxypropyltrimethoxysilane doped with ortho‐phosphoric acid. The polymer matrix contains many hydrophilic sites and consists of a double‐crosslinked framework of polysiloxane and amine/epoxide. Differential scanning calorimetry results suggest that hydrogen bonding or electrostatic forces are present between H3PO4 and the amine nitrogen, resulting in an increase in the glass‐transition temperature of the poly(allylamine) chain with an increasing P/N ratio. The 31P magic‐angle spinning NMR spectra indicate that three types of phosphate species are involved in the proton conduction, and the motional freedom of H3PO4 is increased with increasing P/N ratios. The conductivity above 80 °C does not drop off but increases instead. Under a dry atmosphere, a high conductivity of 10?3 S/cm at temperatures up to 130 °C has been achieved. The maximum activation energy obtained at P/N = 0.5 suggests that a transition of proton‐conducting behavior exits between Grotthus‐ and vehicle‐type mechanisms. The dependence of conductivity on relative humidity (RH) above 50% is smaller for H3PO4‐doped membranes compared with H3PO4‐free ones. These hybrid polymers have characteristics of low water content (23 wt %) and high conductivity (10?2 S/cm at 95% RH), making them promising candidates as electrolytes for fuel cells. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3359–3367, 2005  相似文献   

14.
Polymeric membranes are important tools for intensifying separation processes in chemical industries, concerning strategic tasks such as CO2 sequestration, H2 production, and water supply and disposal. Mixed‐matrix and supported membranes have been widely developed; recently many of them have been based on metal–organic frameworks (MOFs). However, most of the impacts MOFs have within the polymer matrix have yet to be determined. The effects related to thermal behavior arising from the combination of MOF ZIF‐8 and polysulfone have now been quantified. The catalyzed oxidation of the polymer is strongly affected by the MOF crystal size and distribution inside the membrane. A 16 wt % 140 nm‐sized ZIF‐8 loading causes a 40 % decrease in the observed activation energy of the polysulfone oxidation that takes place at a temperature (545 °C) 80 °C lower than in the raw polymer (625 °C).  相似文献   

15.
Electrochemical characteristics of single cell performances at various humidity conditions and constant temperatures of 40?100 °C using membrane electrode assemblies (MEAs) were studied. The MEAs consist of alternative proton-conducting hybrid membrane electrolyte and noble Pt/C catalyst for the H2/O2 proton exchange membrane fuel cells (PEMFCs). The function of humidity on the cell performances was investigated at larger current density values of 501 mA cm?2 and constant cell temperatures of 80 and 90 °C and the relative humidity of 100 %. The power density value of 400 mW cm?2 was obtained when the same MEA at similar operating conditions was used. The effects of temperature on the single cell performances were investigated at various temperature ranges of 40–100 °C and constant relative humidity of 50, 70, and 100 %. The maximum current density and power density values of about 600 mA cm?2 and 160 mW cm?2, respectively, were obtained at 90 °C with 100 % RH. The results were compared with the reported results of Nafion membrane and similar hybrid membranes operating at low temperatures for H2/O2 fuel cells. Finally, the results provided an alternative proton-conducting electrolyte as promising candidate for low/intermediate temperature operating H2/O2 fuel cells.  相似文献   

16.
Electrochemical properties of metal oxide have a strong correlation with the crystalline structures. In this work, the effect of calcination temperature on the phase evolution and electrochemical properties of Sm2O3 was systematically evaluated. The results demonstrate that the sample calcinated at 700 °C (SM-700) is composed of a pure cubic phase while it begins to convert into a monoclinic phase at a temperature above 800 °C and fully converts into a monoclinic phase at 1100 °C. Moreover, the evolution process causes atomic redistribution, and more oxygen vacancies are formed in cubic phase Sm2O3, contributing to the improved ionic conductivity. The ionic conductivity of 0.138 S cm−1 and maximum power density of 895 mW cm−2 at 520 °C are achieved using SM-700 as electrolyte for protonic ceramic fuel cell (PCFC). The cubic structure remains stable in the durability testing process and the SM-700 based fuel cell delivers enhanced stability of 140 mW cm−2 for 100 h. This research develops a calcination evolution process to improve the ionic conductivity and fuel cell performance of the Sm2O3 electrolyte for stable PCFC.  相似文献   

17.
To combine good chemical stability and high oxygen permeability, a mixed ionic‐electronic conducting (MIEC) 75 wt % Ce0.85Gd0.1Cu0.05O2?δ‐25 wt % La0.6Ca0.4FeO3?δ (CGCO‐LCF) dual‐phase membrane based on a MIEC–MIEC composite has been developed. Copper doping into Ce0.9Gd0.1O2?δ (CGO) oxide enhances both ionic and electronic conductivity, which then leads to a change from ionic conduction to mixed conduction at elevated temperatures. For the first time we demonstrate that an intergranular film with 2–10 nm thickness containing Ce, Ca, Gd, La, and Fe has been formed between the CGCO grains in the CGCO‐LCF one‐pot dual‐phase membrane. A high oxygen permeation flux of 0.70 mL min?1 cm?2 is obtained by the CGCO‐LCF one‐pot dual‐phase membrane with 0.5 mm thickness at 950 °C using pure CO2 as the sweep gas, and the membrane shows excellent stability in the presence of CO2 even at lower temperatures (800 °C) during long‐term operation.  相似文献   

18.
The effect of the dispersion of zinc oxide (ZnO) nanoparticles in the zinc ion conducting gel polymer electrolyte is studied. Changes in the morphology/structure of the gel polymer electrolyte with the introduction of ZnO particles are distinctly observed using X-ray diffraction and scanning electron microscopy. The nanocomposites offer ionic conductivity values of >10?3 S cm?1 with good thermal and electrochemical stabilities. The variation of ionic conductivity with temperature follows the Vogel–Tamman–Fulcher behavior. AC impedance spectroscopy, cyclic voltammetry, and transport number measurements have confirmed Zn2+ ion conduction in the gel nanocomposites. An electrochemical stability window from ?2.25 to 2.25 V was obtained from voltammetric studies of nanocomposite films. The cationic (i.e., Zn2+ ion) transport number (t +) has been found to be significantly enhanced up to a maximum of 0.55 for the dispersion of 10 wt.% ZnO nanoparticles, indicating substantial enhancement in Zn2+ ion conductivity. The gel polymer electrolyte nanocomposite films with enhanced Zn2+ ion conductivity are useful as separators and electrolytes in Zn rechargeable batteries and other electrochemical applications.  相似文献   

19.
Ba0.95Ce0.8Ho0.2O3-a was prepared by high temperature solid-state reaction. X-ray diffraction (XRD) pattern showed that the material was of a single perovskite-type orthorhombic phase. Using the material as solid electrolyte and porous platinum as electrodes, the measurements of ionic transport number and conductivity of Ba0.95Ce0.8Ho0.2O3-a were performed by gas concentration cell and ac impedance spectroscopy methods in the temperature range of 600---1000 ℃in wet hydrogen, dry and wet air respectively. Ionic conduction of the material was investigated and compared with that of BaCe0.8Ho0.2O3-a. The results indicated that Ba0.95Ce0.8Ho0.2O3-a was a pure protonic conductor with the protonic transport number of 1 during 600---700℃ in wet hydrogen, a mixed conductor of protons and electrons with the protonic transport number of 0.97--0.93 in 800---1000 ℃. But BaCe0.8Ho0.2O3-a was almost a pure protonic conductor with the protonic transport number of 1 in 600---900 ℃ and 0.99 at 1000 ℃ in wet hydrogen. In dry air and in the temperature range of 600---1000 ℃, they were both mixed conductors of oxide ions and electronic holes, and the oxide-ionic transport numbers were 0.24--0.33 and 0.17--0.30 respectively. In wet air and in the temperature range of 600---1000 ℃, they were both mixed conductors of protons, oxide ions and electronic holes, the protonic transport numbers were 0.11--0.00 and 0.09--0.01 respectively, and the oxide-ionic transport numbers were 0.41--0.33 and 0.27--0.30 respectively. Protonic conductivity of Ba0.95Ce0.8Ho0.2O3-a in both wet hydrogen and wet air was higher than that of BaCe0.8Ho0.2O3-a in 600--- 800 ℃, but lower in 900--1000 ℃. Oxide-ionic conductivity of the material was higher than that of BaCe0.8Ho0.2O3-a in both dry air and wet air in 600---1000 ℃.  相似文献   

20.
Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides (fluorite Gd0.1Ce0.9O1.95 and perovskite La0.8Sr0.2Ga0.8Mg0.2O2.55) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)‐based polymer composite electrolytes, each with a Li+ conductivity above 10?4 S cm?1 at 30 °C. Li solid‐state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2‐site occupancy originates from the strong interaction between the O2? of Li‐salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All‐solid‐state Li‐metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号