首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
An evidence that local ordered magnetic fields from 30 to 200 G exist in diamagnets α-Bi2O3, Bi3O4Br, Bi4Ge3O12, Bi2Al4O9 which comprise neither d- nor f-elements was earlier given by the zerofield and Zeeman-perturbed209Bi nuclear quadrupole resonance (NQR) spectra. With a view to find similar spectroscopic effects in other compounds, we examined the209Bi NQR Zeeman-perturbed spectra of the Bi3B5O12 oriented single crystal as well as the zero-field spin echo envelopes in Bi3B5O12 and Bi2Ge3O9. Distinctive modulations were displayed by the zero-field209Bi spin echo envelopes in Bi2Ge3O9 powder. The modeling of the spin echo envelopes within the density matrix formalism explained the observed effect by the presence of local ordered magnetic field of the order of 65 G at the Bi atoms. The zero-field modulations of the209Bi spin echo envelopes were also observed in Bi3B5O12 indicating the presence of the internal source of line splitting. This finding and considerable deviation of the resonance intensity ratios from that in a pure NQR, found in the zero-field209Bi spectrum of the single crystal, were understood as indirect evidences that a local ordered magnetic field exists also in Bi3B5O12. The zero-field209Bi spin echo envelopes assigned to the lines split by the local magnetic fields in α-Bi2O3 and Bi4Ge3O12 were observed to display modulations on the appropriate curves.  相似文献   

2.
Evidence that local ordered magnetic fields from 30 to 250 G exist in bismuth-based diamagnetic compounds comprising neither d- nor f-elements was given by 209Bi NQR spectroscopy and supported by SQUID measurements of α-Bi2O3. The NQR experiments involved a study of the zero-field line shapes, analysis of the Zeeman-perturbed patterns, and examination of the zero-field spin-echo envelopes in single crystals and powders. The results of the experiments followed by computer modeling of the observed spectra were interpreted assuming that ordered magnetic fields are located at the bismuth sites in α-Bi2O3, Bi3O4Br, Bi2Al4O9, Bi4Ge3O12, Bi2Ge3O9 and perhaps in Bi3B5O12. A survey of the related 209Bi NQR data is here presented.  相似文献   

3.
Hongjie Zhang  Gang Chen  Xin Li 《Solid State Ionics》2009,180(36-39):1599-1603
Photocatalysts Bi4Ti3 ? xCrxO12(x = 0.00, 0.06, 0.15, 0.30, 0.40, and 0.50) with perovskite structure were synthesized by sol–gel method and their electronic structures and photocatalytic activities were investigated. The Bi4Ti2.6Cr0.4O12 photocatalyst exhibited the highest performance of H2 evolution in methanol aqueous solution (58.1 μmol h? 1 g? 1) under visible light irradiation (λ > 400 nm) without a co-catalyst, whereas no H2 evolution is observed for Bi4Ti3O12 under the same conditions. The UV–vis spectra indicated that the Bi4Ti2.6Cr0.4O12 had strong photoabsorption in the visible light region. The results of density functional theory (DFT) calculation illuminate that the conduction bands of Bi4Ti3O12 are mainly attributable to the Ti 3d + Bi 6p orbitals, and the valence bands are composed of O 2p + Bi 6s hybrid orbitals, while the conduction bands of chromium-doped Bi4Ti3O12 are mainly attributable to the Ti 3d + Bi 2p + Cr 3d orbitals, and the O 2p + Cr 3d hybrid obitals are the main contribution to the valence band.  相似文献   

4.
The Yb-doped Bi2O3–GeO2 glasses were prepared by the conventional melt quenching technique. Near-infrared (NIR) broadband emission was found at about 1024 nm, and 1330 nm (under 785 nm excitation), and the measured fluorescent lifetime was about several hundred microseconds. The emission intensity of Yb-doped Bi2O3–GeO2 glasses increased with increasing of Yb dopant in our experiments. The NIR emission should be related to Yb3+ and lower valence Bi ions.  相似文献   

5.
Single crystalline films of Lu3Al5O12:Bi and Y3Al5O12:Bi have been studied at 4.2–450 K by the time-resolved luminescence spectroscopy method. Their emission spectrum consists of two types of bands with strongly different characteristics. The ultraviolet band consists of two components, arising from the electronic transitions which correspond to the 3P1  1S0 and 3P0  1S0 transitions in a free Bi3+ ion. At T < 80 K, mainly the lower-energy component with the decay time ~10?3 s is observed, arising from the metastable 3P0 level. At T > 150 K, the higher-energy component prevails, arising from the thermally populated emitting 3P1 level. The visible emission spectrum consists of two dominant strongly overlapped broad bands with large Stokes shifts. At 4.2 K, their decay times are ~10?5 s and ~10?4 s and decrease with increasing temperature. Both of the visible emission bands are assumed to be of an exciton origin. The lower-energy band is ascribed to an exciton, localized near a single Bi3+ ion. The higher-energy band, showing a stronger intensity dependence on the Bi3+ content, is assumed to arise from an exciton, localized near a dimer Bi3+ center. The structure of the corresponding excited states is considered, and the processes, taking place in these states, are discussed.  相似文献   

6.
The quadrupole 209Bi spin–spin and spin–lattice relaxation were studied within 4.2–300 K for pure and doped Bi4Ge3O12 single crystals which exhibit, as was previously found, anomalous magnetic properties. The results revealed an unexpectedly strong influence of minor amounts of paramagnetic dopants (0.015–0.5 mol.%) on the relaxation processes. Various mechanisms (quadrupole, crystal electric field, electron spin fluctuations) govern the spin–lattice relaxation time T 1 in pure and doped samples. Unlike T 1, the spin–spin relaxation time T 2 for pure and Nd-doped samples was weakly dependent on temperature within 4.2–300 K. Doping Bi4Ge3O12 with paramagnetic atoms strongly elongated T 2. The elongation, although not so strong, was also observed for pure and doped crystals under the influence of weak (~30 Oe) external magnetic fields. To confirm the conclusion about strong influence of crystal field effects on the temperature dependence of T 1 in the temperature range 4.2–77 K, the magnetization vs. temperature and magnetic field was measured for Nd- and Gd-doped Bi4Ge3O12 crystals using a SQUID magnetometer. The temperature behavior of magnetic susceptibility for the Nd-doped crystal was consistent with the presence of the crystal electric field effects. For the Gd-doped crystal, the Brillouin formula perfectly fitted the curve of magnetization vs. magnetic field, which pointed to the absence of the crystal electric field contribution into the spin–lattice relaxation process in this sample.  相似文献   

7.
《Solid State Ionics》2006,177(33-34):2897-2902
A new series of columnar phases Ln2/31/3[Bi12O14](MoO4)5 (□ vacancy) with Ln = La, Nd, Gd, Ho and Yb have been synthesized and structurally characterized. They feature the same formula as the molybdate phase Bi2/31/3[Bi12O14](MoO4)5 and crystallize in the monoclinic system, space group P2/c. These phases are isostructural with the prototype structure Bi[Bi12O14](MoO4)4(VO4). Pellets of this rare-earth series obtained by spark plasma sintering and measured by impedance spectroscopy show a good anionic conductivity with a parabolic evolution whose maximum is raised by the Gd species at a determined value σ = 6.6 × 10 3 S cm 1 at 980 K.  相似文献   

8.
A Nd:Bi12SiO20 crystal was grown by the Czochralski method. The thermal properties of the crystal were systematically studied. The thermal expansion coefficient was measured to be α=11.42×10?6 K?1 over the temperature range of 295–775 K, and the specific heat and thermal diffusion coefficient were measured to be 0.243 Jg?1 k?1 and 0.584 mm2/s, respectively at 302 K. The density was measured to be 9.361 g/cm3 by the buoyancy method. The thermal conductivity of Nd:Bi12SiO20 was calculated to be 1.328 Wm?1 K?1 at room temperature (302 K). The refractive index of Nd:Bi12SiO20 was measured at room temperature at eight different wavelengths. The absorption and emission spectra were also measured at room temperature. Continuous-wave (CW) laser output of a Nd:Bi12SiO20 crystal pumped by a laser diode (LD) at 1071.5 nm was achieved with an output power of 65 mW. To our knowledge, this is the first time LD pumped laser output in this crystal has been obtained. These results show that Nd:Bi12SiO20 can serve as a laser crystal.  相似文献   

9.
Bi2O3 doped 65SiO2–20Al2O3–15La2O3 (in mole%) glasses were prepared by the traditional melting–quenching method. The spectroscopic properties and mechanism of NIR broadband emission in these glasses were investigated in this work. Three excitation wavelengths of 500, 700 and 800 nm were used to test emission spectra. The emission band under 500 nm excitation can be regarded as combination of emission bands under 700 and 800 nm excitation. 2.0 mole% is found to be the optimal Bi2O3 doping level in this glass. Under 500 nm excitation its emission peak, FWHM and lifetime of emission band are 1160 nm, 300 nm and 569 μs, respectively. The longest fluorescent lifetime reaches 620 μs under 700 nm excitation. The valence state of Bi in these glasses is suggested to be lower than +3 by X-ray photoelectron spectroscopy. With the help of energy matching, we infer that both Bi0 and Bi+ centers are responsible for the NIR fluorescence of Bi2O3 doped 65SiO2–20Al2O3–15La2O3 glass.  相似文献   

10.
Nuclear quadrupole resonance (NQR) of209Bi has been studied in Bi4 (GeO4)3 and Bi4 (SiO4)3 using a wide band coherence-controlled superregenerative oscillator-detector. All the four allowed (ΔM I=±1) transitions are observed. In both cases the electric field gradient (EFG) tensor is axially symmetric (η=0.0). The quadrupole coupling constante 2 qQ is measured to be 490.8±1 MHz and 470.4±1 MHz respectively. It is pointed out that the purely ionic model is inadequate to understand these results. With the available experimental accuracy and the strength of the applied electric field (∼ 6 KV/cm), no field-induced effects on the NQR spectrum could be observed in the case of Bi4 (SiO4)3.  相似文献   

11.
High-quality Bi2Te3 microcrystals have been grown by physical vapor transport (PVT) method without using a foreign transport agent. The microcrystals grown under optimal temperature gradient are well facetted and they have dimensions up to ~100 μm. The phase composition of grown crystals has been identified by X-ray single crystal structure analysis in space group R3?m, a=4.3896(2) Å, b=30.5019(10) Å, Z=3 (R=0.0271). Raman microspectrometry has been used to describe the vibration parameters of Bi2Te3 microcrystals. The FWHM parameters obtained for representative Raman lines at 61 cm?1 and 101 cm?1 are as low as 3.5 cm?1 and 4.5 cm?1, respectively.  相似文献   

12.
《Journal of luminescence》2003,65(2-4):97-103
The luminescence and energy transfer processes in La2O3–Nb2O5–B2O3:M3+ (M=Bi, Eu, Dy) glasses were investigated using luminescence spectroscopy (excitation and emission, down to 4.2 K) and decay time measurements at room temperature. The observation of niobate luminescence implies a considerable degree of short- and intermediate-range order in these glasses. Energy transfer from the niobate groups to the lanthanide ions was observed for Eu3+, but not for Dy3+, suggesting that the energy transfer process occurs to the charge-transfer state of the Eu3+ ion, rather than to its f-levels. Inter-Eu3+ energy transfer was negligible in the concentration range investigated (up to 3 mol%). In contrast, cross-relaxation processes between Dy3+ ions were active at concentrations as low as 0.5 mol%. In the Bi3+ doped glasses the energy transfer was observed from the Bi3+ excited levels to the oxygen deficient niobate groups.  相似文献   

13.
Bi4(GeO4)3 glass materials have been characterized by X-ray excited luminescence, photoluminescence and cathodo-luminescence measurements. The materials were obtained by crystallization at different temperatures and their spectroscopic parameters were compared before and after crystallization. Thermoluminescence curves recorded after electron irradiation of BGO glass behave similarly to BGO crystals, showing several peaks between 408 K (135 °C) and 610 K (337 °C). The differences between the Bi4(GeO4)3 crystals and glass materials are believed to result from the random distribution of GeO4 tetrahedra around Bi3+ ions which influences the photoluminescence and TL parameters. The CL images of glass-ceramic samples obtained by partial crystallization at 600 °C show luminescent crystalline structures, which are probably responsible for the increase in scintillation efficiency.  相似文献   

14.
Samples with nominal compositions of x = 0–0.1 in (Bi(1+3x)/3Cu(2?3x)/3)Sr2(RE1?xCax)Cu2Oz ((Bi,Cu)-“1-2-1-2”; RE: Y or rare-earth element) were synthesized by a solid-state reaction method and characterized by means of X-ray diffractometry (XRD). It is confirmed that the (Bi,Cu)-“1-2-1-2” forms only when RE = Y, Dy and Ho. Single- or nearly single-phase samples are obtained for x = 0–0.05 and the Ca-free composition of this compound is determined to be (Bi1/3Cu2/3)Sr2RECu2Oz. Since ionic radii of Y, Dy and Ho are very close to each other and this seems to be an essential factor for the stability of the (Bi,Cu)-“1-2-1-2”.  相似文献   

15.
Bi2S3 thin film electrode has been synthesized by simple and low cost successive ionic layer adsorption and reaction (SILAR) method on stainless steel (SS) substrate at room temperature. The formation of interconnected nanoparticles with nanoporous surface morphology has been achieved and which is favourable to the supercapacitor applications. Electrochemical supercapacitive performance of Bi2S3 thin film electrode has been performed through cyclic voltammetry, charge-discharge and stability studies in aqueous Na2SO4 electrolyte. The Bi2S3 thin film electrode exhibits the specific capacitance of 289 Fg−1 at 5 mVs−1 scan rate in 1 M Na2SO4 electrolyte.  相似文献   

16.
Magnetoresistance of bulk textured Bi1.8Pb0.3Sr1.9Ca2Cu3Ox + Ag ceramics has been studied in the magnetic fields applied parallel and perpendicular to ab planes of Bi2223 crystallites. Besides well known anisotropy of magnetoresistance of textured superconductors (RH || c > RH || ab), anisotropic hysteresis of R(H) dependences was investigated. Parameters characterizing hysteretic R(H) curves differ for the cases H || c and H || ab. This behavior is explained within the model of a granular superconductor where the total magnetic induction in the intercrystallite boundaries is superposition of the external field and the magnetic field induced by dipole magnetic moments of neighbor crystallites.  相似文献   

17.
Bulk Gd2Si2O7:Ce (GPS:Ce) single crystals obtained by Czochralski method demonstrate a high light output at γ-irradiation (3.8 times higher in comparison with Bi4Ge3O12 (BGO)), energy resolution 13% (137Cs, 662 KeV), fast decay time (41.7 ns), and good thermal stability of light output (up to 425 K). This combination of characteristics makes this scintillator very attractive for medical imaging and high-temperature applications. Light output at thermal neutron monitoring is evaluated as twice higher in comparison with Gd2SiO5:Ce (GSO). The observed rather high afterglow level (0.2% after 20 ms) and moderate energy resolution (13%) certifies a room for improvement of these parameters by further optimization of crystal quality.  相似文献   

18.
The Bi–Tm co-doped SiO2–Al2O3–La2O3 (SAL) glasses, which exhibited a broadband near-infrared (NIR) emission was investigated by the optical absorption and photoluminescence spectra. The super broadband near-infrared emission from 1000 to 2100 nm, which covered the whole O, E, S, C and L bands, was observed in the Bi–Tm co-doped samples, as a result of the overlap of the Bi-related emission band (centered at 1270 nm) and the emission from Tm3+ 3H43F4 transition (1440 nm) as well as Tm3+ 3F43H6 transition (1800 nm). Relative luminescence intensity at 1270, 1440 and 1800 nm wavelength varied depending on the mixing ratio of Bi and Tm and the full-width at half-maximum (FWHM) extending from 1000 to 1600 nm could be 400 nm. These results indicated that Bi–Tm co-doped SiO2–Al2O3–La2O3 glasses could provide potential applications in tunable lasers as well as the broadband optical amplifiers in WDM system.  相似文献   

19.
The antiferromagnetic body-centred tetragonal compound GdNi2Ge2 orders at 28 K. Successive magnetic phase transitions are observed by specific-heat and magnetisation measurements as a function of temperature in different applied magnetic fields. Plots of M2 vs. B/M (Arrott-plots) show various anomalies. On the basis of the experimental results, a magnetic phase diagram is constructed. The multiple magnetic phase transitions are discussed in terms of competing ordering modes in the Gd sublattice.  相似文献   

20.
Superconducting ceramics of Bi1.6Pb0.4Sr2Ca2Cu3OyFx (x = 0–0.6) are prepared in air by conventional solid state reaction and characterized. The study shows that the melting point of the samples decreases as fluorine content increases. As a consequence, the grain size increases with the doping level and for x = 0.6, the sample is completely deformed and presents a concave shape making impossible the measurements on it. The Vickers microhardness reaches its maximum for x = 0.2. The analysis of the X-ray diffraction results reveals that all the samples are composed of only Bi(Pb)-2212 and Bi(Pb)-2223 phases. The highest proportion of the high Tc phase (Bi(Pb)-2223) is also observed for x = 0.2 and is about 67.32%. The refinement of cell parameters is done by considering the structural modulation. The results show that the doping leads to a reduction of cell volume as well as the a axis component of modulation. From resistivity versus temperature measurements, it is shown that the doped phases exhibit higher onset critical transition temperatures than the undoped one. The residual resistivity increases with fluorine content suggesting that the doping introduces structural defects and disorder into the samples. The obtained critical current density at 77 K under zero magnetic field also increases with fluorine doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号