首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Parallel-plates enthalpy exchangers are one of the most commonly encountered energy recovery devices that are used to simultaneously transfer both sensible heat and moisture between fresh air and exhaust ventilation air. For such equipments, the water vapor sorption properties of the plate materials have tremendous impacts on system performance. In this investigation, three different materials, namely, common paper, CA (cellulose acetate) membrane and a modified CA membrane) are selected as the plate materials for three enthalpy exchangers. Sorption curves and contact angles of these three materials are measured to reflect their hydrophilicity. The steady-state sensible and latent effectiveness of the three exchangers are tested in a special test rig, and the test results are compared with the model predictions. A heat and moisture transfer model for the enthalpy exchangers is proposed. The effects of the varying operating conditions like air flow rates, temperature, and humidity on the sensible and latent effectiveness are evaluated. Both the numerical and experimental results indicate that the moisture resistance through plates is co-determined by thickness, sorption slope, and sorption potential. Moisture diffusivity in various materials is in the same order. So when the plate thickness is fixed, the higher the sorption slopes are, the higher the latent performance is. Of the three exchangers, the exchanger with the modified CA membrane material has the highest performance due to small thickness, steep sorption slope, and large sorption potentials. The paper exchanger has a latent effectiveness of 0.4, while the membranes have latent effectiveness of greater than 0.7.  相似文献   

2.

Present experimental investigation incorporates characterization of Al nanopowder, synthesis of Al/water nanofluids, and effect of these nanofluids on thermal performance of compact heat exchanger. Al nanoparticles are characterized using TEM and XRD. Al/water nanofluid is prepared by dispersing metal basis aluminium nanoparticles of average 100 nm size into double distilled water at two different particle volume concentrations of 0.1 and 0.2%. The nanofluids are prepared by two-step method and cetyl trimethyl ammonium bromide surfactant is used to stabilize the nanofluid. Thermo-physical properties of nanofluids at two different concentrations and their variation with fluid temperature are measured experimentally. It is examined that thermal conductivity, viscosity, and density of the nanofluid increased with the increase of volume concentrations. Furthermore, by increasing the fluid temperature, thermal conductivity is intensified, while the viscosity and density are decreased. Heat transfer parameters are strong functions of these thermo-physical properties. Therefore, comprehensive findings on heat transfer coefficient, Nusselt number, colburn factor, friction factor, and effectiveness are determined experimentally for prepared nanofluids passing under laminar conditions through single-pass cross-flow compact heat exchanger attached with multi-louvered fins.

  相似文献   

3.
The optimal performance of heat-driven binary separation processes with linear phenomenological heat transfer law(q∝△(T-1)) is analyzed by taking the processes as heat engines which work between high-and low-temperature reservoirs and produce enthalpy and energy flows out of the system,and the temperatures of the heat reservoirs are assumed to be time-and space-variables.A numerical method is employed to solve convex optimization problem and Lagrangian function is employed to solve the average optimal contr...  相似文献   

4.
Membrane-oxygenator performance is limited by the mass-transfer resistance on the blood side. The most successful techniques thus far for enhancing oxygenator performance have employed liquid-side pressure pulsations. However, this technique is limited since it causes the least relative motion near the membrane. In this study we explore the use of axial vibrations of a membrane tube bundle to increase oxygen transfer to the intralumenal liquid flow. An analytical solution is first developed for the hydrodynamics of laminar flow through a sinusoidally vibrated straight cylindrical tube. This indicates that the effect of the tube vibrations is characterized by a dimensionless velocity and frequency. A novel oxygenator is designed that permits vibrating a parallel membrane hollow tube bundle without directly pulsing the intralumenal liquid flow. An embodiment of this design employing 41 silicone rubber tubes is used to study the oxygenation of water. A tuned response is observed in that the maximum enhancement in mass transfer for a fixed dimensionless vibration velocity occurs at a specific dimensionless frequency. These experiments demonstrate that axial membrane vibrations can increase the mass-transfer coefficient by at least a factor of 2.65. Even greater enhancement may be possible for systems characterized by larger Schmidt or Graetz numbers for which diffusive mass transfer is more limiting. Employing membrane vibrations may offer the additional advantage of minimizing fouling in blood oxygenator as well as other applications.  相似文献   

5.
When transport-efficient membrane modules (such as those where the liquid flows outside hollow fibre membranes) or membranes with prolonged resistance to wetting are used for the oxygenation of blood or other cell suspensions, membrane contribution to the overall oxygen transfer resistance into the liquid may become significant. Thus, estimation of membrane diffusive permeability towards relevant gases (e.g., oxygen) is important to develop new membranes and to ensure reproducible commercial membrane performance.

In this paper, we report on a turbulent flow technique for the estimation of the oxygen diffusive permeability of membranes used in outside-flow oxygenators. Water is re-circulated under turbulent flow conditions in a closed-loop from a reservoir to the shell of lab-scale membrane modules. The overall oxygen transfer to water coefficient is estimated at increasing water flow rates from the time the change of dissolved oxygen tension in the stream leaving the water reservoir occurs. Oxygen diffusive permeability is estimated as the reciprocal overall transfer resistance at infinitely high water flow rates, for negligible gas-side oxygen transport resistance. The technique was used to estimate oxygen diffusive permeability of commercial Oxyphan® polypropylene membranes for blood oxygenation and of two laboratory polypropylene membranes, the one featuring a microporous wall structure with smaller-than-standard pore size, the other featuring an outer thin, dense layer supported by a thick spongy layer. The turbulent flow technique yields oxygen diffusive permeability estimates consistent both with membrane hydraulic permeability towards gaseous nitrogen, membrane wall structure, and with values in literature obtained using a liquid reactive with oxygen, but without the complications associated with reaction and physical transport kinetic characterisation. We conclude that the turbulent flow technique is a useful tool in the development and quality control of membranes for the oxygenation of blood and other cell suspensions.  相似文献   


6.
We report for the first time the heat of transfer and the Soret coefficient for n-butane in silicalite-1. The heat of transfer was typically 10 kJ/mol. The Soret coefficient was typically 0.006 K(-1) at 360 K. Both varied with the temperature and the concentration. The thermal conductivity of the crystal with butane adsorbed was 1.46 +/- 0.07 W/m K. Literature values of the isosteric enthalpy of adsorption, the concentration at saturation, and the diffusion coefficients were reproduced. Nonequilibrium molecular dynamics simulations were used to find these results, and a modified heat-exchange algorithm, Soft-HEX, was developed for the purpose. Enthalpies of butane were also determined. We use these results to give numerical proof for a recently proposed relation, that the heat of transfer plus the partial molar enthalpy of butane is constant at a given temperature. The proof is offered for a regime where the partial molar enthalpy can be approximated by the molar internal energy. This result may add to the understanding of the sign of the Soret coefficient. The technical importance of the heat of transfer is discussed.  相似文献   

7.
Features of the sorption of substituted aromatic aldehydes by a weak-base anion exchanger under equilibrium conditions are investigated using vanillin and ethylvanillin as examples. Analysis of the sorption isotherms of carbonyl compounds at different temperatures allows us to calculate the equilibrium characteristics of their sorption and assess the entropy and enthalpy contributions to the energy of the process. Hydration characteristics of the macroporous weak-base anion exchanger before and after the sorption of aromatic aldehydes are compared.  相似文献   

8.
The thermokinetic characteristics of sorption of proline and hydroxyproline on H-sulfocation exchanger were determined. The absorption of dipolar imino acid ions by the cation exchanger was found to be an exothermic process accompanied by a decrease in the enthalpy component of sorption. The enthalpy character of sorption was to a greater extent characteristic of hydroxyproline.  相似文献   

9.
An experimental study was carried out to investigate the thermal performance of a flat capillary pumped loop (CPL) using the water based and the ethanol based Cu nanofluids as the working fluids under several steady sub-atmospheric operating pressures. The evaporator of the CPL was placed horizontally and heated from the bottom. The experimental results show that adding Cu nanoparticles into both base fluids can significantly enhance the evaporating heat transfer coefficient and the maximum heat removal capacity. There is an optimal mass concentration of Cu nanoparticles corresponding to the maximum heat transfer enhancement. The operating temperature or the operating temperature has an apparent effect on the heat transfer enhancement. The heat transfer enhancement effects increase distinctly with increasing the operating temperature. The heat transfer coefficient and the maximum heat removal capacity can be increased up to 45% and 16% after substituting Cu-ethanol nanofluids for the base fluids, respectively. The present investigation discovered that the thermal performance of a CPL can be evidently strengthened by using Cu nanofluids.  相似文献   

10.

This paper presents the numerical analysis of the transient performance of the latent heat thermal energy storage unit established on finite difference method. The storage unit consists of a shell and tube arrangement with phase change material (PCM) filled in the shell space and the heat transfer fluid (HTF) flowing in the inner tube. The heat exchange between the HTF, wall and PCM has been investigated by developing a 2-D fully implicit numerical model for the storage module and solving the complete module as a conjugate problem using enthalpy transforming method. A comparative investigation of the total melting time of the PCM has been performed based on natural convection in liquid PCM during the charging process. The novelty of this paper lies in the fact it includes convection in PCM and this investigation includes a detailed parametric study which can be used as a reference to design latent heat storage. The results indicate that natural convection accelerates the melting process by a significant amount of time. In order to optimize the design of the thermal storage unit, parametric study has been accompanied to analyze the influence of various HTF working conditions and geometric dimensions on the total melting time of the PCM. Another important feature considered in this work is the influence of the inner wall of the tube carrying the HTF on the entire melting time of the PCM. An error of around 7.2% is reported when inner wall of the tube is ignored in the analysis.

  相似文献   

11.
《印度化学会志》2021,98(11):100200
For the first time, the heat transfer performance of a CuO–ZnO (80:20)/water hybrid has been studied experimentally and numerically in a shell and tube heat exchanger under turbulent flow conditions nanofluid (STHE). All experiments are carried out with 0.01 ​vol% CuO–ZnO (80:20)/water hybrid nanofluid at Reynolds numbers (NRe) ranging from 1900 to 17,500. The stabilized hybrid nanofluids (30 ​°C-Tube side) are then used as a coolant to reduce the hot fluid (60 ​°C-shell side) temperature using a STHE, with the results for the convective heat transfer coefficient, Nusselt number, friction factor, and pressure drop reported. The primary goal of this paper is to investigate the impact of hybrid nanoparticle mixing ratio optimization on STHE heat transfer efficiency under various operating conditions. According to the findings, the CuO–ZnO (80:20)/water hybrid nanofluid improved the heat transfer performance of the STHE at all Reynolds numbers. When using nanofluid over water, the Nusselt number and pressure drop were improved by approximately 33% and 13%, respectively. The hybrid nanofluid's maximum thermal performance factor and thermal efficiency enhancement were 1.45 and 7%, respectively, at NRe ​= ​17,500. According to the study, the thermal conductivity of nanofluid varies by only 5% after ten trials. Furthermore, the ANSYS Fluent program was used to predict the behavior of the hybrid nanofluid in STHE, and the simulation results fit the experimental values very well.  相似文献   

12.
In‐tube extraction is a full automated enrichment technique that consists of a stainless‐steel needle, packed with sorbent material for the extraction of volatile and semivolatile compounds. In principle, all particulate sorbents used for enrichment in air or headspace analysis can be used. However, the selection of the sorbents is merely based on empirical considerations rather than on experimental data, which is caused by a lack of knowledge about the relevant physicochemical properties of the sorbent. Especially, the knowledge of hydrostatic, advective, diffusive, and dispersion mechanisms in addition to sorption enthalpies are important for combined transport and sorption models. To provide these missing parameters, we developed and evaluated a method in which an ordinary in‐tube extraction needle was employed directly as column for sorbent characterization by inverse gas chromatography. As probe compounds, benzene, ethyl acetate, and 3‐methyl‐1‐butanol were used to determine thermodynamic parameters such as sorption enthalpy, partitioning constant between the solid and gas phase, and kinetic parameters such as the diffusion coefficient, dispersion coefficient, and apparent permeability, exemplarily. As sorbent, three commercially available phases were characterized to demonstrate the applicability of the method.  相似文献   

13.
The spiral plate heat exchanger (SHE) is widely used in plenty of industrial services in full counter current flow liquid-liquid heat exchange. We have produced a thermal modelling of the heat exchanges in both steady-state and time dependent cases with 2D spiral geometry, allowing computation with different materials, forced convective heat transfer models in turbulent flow and geometrical parameters options. We will display here some results in steady-state conditions in order to improve the exchanger performances.  相似文献   

14.

This paper aims to investigate the effects of moisture migration and groundwater seepage on the heat transfer capacity of ground heat exchangers in stratified soils. A three-dimensional unsteady groundwater flow and heat transport model was established using finite volume method. Sixteen cases with different model considerations and initial soil conditions were simulated based on the proposed model. A group of 8 cases considering only transverse moisture migration and another group considering both transverse and longitudinal moisture migration were compared. The heat and moisture fields after 30 days of operation reveal that considering the change of saturation caused by vertical moisture transfer, the soil temperature field will be affected, but borehole outlet temperature was less influenced. The absolute value of outlet temperature difference between corresponding cases in the two groups is only about 0.2 °C. The position of groundwater seepage and arrangement of unsaturated soil layers with different degrees of saturation on heat transfer capacity of vertical ground heat exchanger were further explored. The results show that the longitudinal moisture migration would be made more influential by the existence of seepage layer, because the average relative deviation of inlet and outlet temperature difference between the corresponding cases of Group 1 and Group 2 was 1.34% when setting seepage layer and was 0.44% when without seepage layer. Heat transfer performance of borehole heat exchanger is also affected by the location of seepage layer. The average relative deviation of inlet and outlet temperature difference between the reference case and cases with seepage in the top, middle and bottom layers is 34.18%, 25.08% and 16.82%, respectively. The arrangement of unsaturated soil layers also has a certain effect. When the soil layer with low degree of saturation is located in the upper layer of soil, heat transfer capacity is better.

  相似文献   

15.
Hou  Pumin  Mao  Jinfeng  Liu  Rongrong  Chen  Fei  Li  Yong  Xu  Chang 《Journal of Thermal Analysis and Calorimetry》2019,137(4):1295-1306

In this study, three different volume expansion ratios of expanded graphite (EG) are prepared and investigated to enhance the heat transfer efficiency of the sodium acetate trihydrate (SAT) composites. A series of SAT composite phase change materials (CPCMs) with EG were prepared. The influence of volume expansion ratio and mass fraction of EG on thermodynamic characteristics of SAT CPCMs was examined, including thermal conductivity, phase change temperature, enthalpy, latent heat storage and release time, and the degree of supercooling. Results showed that SAT CPCMs can be absorbed adequately by EG, and EG could enhance the heat transfer efficiency effectively. But it also brought some problems with the addition of all the three volume expansion ratios of EG, such as the poor enthalpy and serious supercooling. Particularly, the situation gets worse with the increase in mass and expansion ratio of EG. Therefore, it is better to choose the EG with proper expansion ratio or reduce the proportion of the EG which possesses higher expansion ratio. Besides, thermal cycling test and thermogravimetric analysis revealed that the SAT CPCMs with 3 mass% EG showed a good thermal stability.

  相似文献   

16.

The energetic analysis of an air handling unit (AHU) combined with an enthalpy air-to-air heat exchanger has been studied to improve the first law thermodynamic efficiency. The energy balance equations for enthalpy air-to-air heat exchanger, conditioned space, heating coil, cooling coil and mixing box have been performed and solved based on a program developed in Engineering Equation Solver. The results showed that using an enthalpy air-to-air heat exchanger leads to energy recovery which in turn decreased the total required AHU power. The effect of using an enthalpy air-to-air heat exchanger on recovered energy in hot and humid ambient is more than the cold and dry one. Using the enthalpy air-to-air heat exchanger, the cooling coil load decreases by 28.27%, which in turn increases the first law efficiency by 32.8%.

  相似文献   

17.
Thermodynamics and kinetics of sorption with the participation of nicotinic and isonicotinic acids on the strongly basic anion exchanger АВ-17-8 were studied. According to calorimetric measurements, partial (differential) heat of sorption was estimated for anions and zwitterions of pyridinecarboxylic acids upon sorption by the OH-form of the anion exchanger AB-17-8 at 298K. Sorption of zwitterions of pyridinecarboxylic acids by the OH-form of the strongly basic anion exchanger can be presented as the process that involves independent reactions of ion exchange, dissociation of pyridinecarboxylic acid, and neutralization. The kinetics of sorption on the strongly basic anion exchanger with the participation of nicotinic and isonicotinic acids is shown to be controlled by the slow diffusion of the components in the polymer phase. For the organic anion in the phase of the anion exchanger АВ-17-8, the diffusion coefficient is equal to (1.3±0.4)?10–12 m2 s–1.  相似文献   

18.
Differential scanning calorimetry is used to evaluate polyethylene for latent heat-thermal energy storage. Polyethylene is a suitable material from the points of view of latent heat, behavior of melting and crystallization, and material cost. The thermal stability is satisfactory when it is used in a closed system with heat transfer media, such as silicone oil, alkyldiphenyl, alkyldiphenylethane, Caloria HT and ethylene glycol, which shield polyethylene from air. Surface-crosslinking by ion bombardment prevents polyethylene from mutual adhesion and it retains its form after melting. Surface-crosslinked polyethylene with silicone oil or ethylene glycol is the most promising, while the heat transfer media, such as alkyldiphenyl, alkyldiphenylethane and Caloria HT, which dissolve polyethylene, decrease the melting point, but have little effect on the latent heat and sharp DSC peaks of melting and crystallization. Thus, the composite of polyethylene with these media can also be used at an adjusted and desirable operating temperature.  相似文献   

19.
Journal of Thermal Analysis and Calorimetry - The plate heat exchanger is an efficient and compact heat exchanger, which has the advantages of high heat transfer coefficient and compact structure...  相似文献   

20.
A mathematical model is developed for the evaporation step in asymmetric membrane casting which allows for the convective transport induced by local film shrinkage because of both solvent loss and the excess volume of mixing effect. Realistic boundary conditions account for the gas phase mass transfer characteristics. Predictions for the cellulose acetate/acetone system are presented for the instantaneous concentration profiles, film thickness, and time required for the interface to skin. The results are presented in the form of dimensionless correlations which allow predicting the behavior during evaporative casting for generalized operating conditions. The predictions are compared with limited data for cellulose acetate/acetone. The model suggests that once the polymer/solvent system has been selected, the most influential process parameter is the gas phase mass transfer coefficient and that inadequate control of this parameter may account for the variability in membranes cast in similar devices operated under ostensibly the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号