首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
This paper is a continuation of our previous work (Part I, Stochastic Process. Appl. 93 (2001) 181–204), with the main purpose of establishing the uniqueness of the stochastic viscosity solution introduced there. We shall prove a comparison theorem between a stochastic viscosity solution and an ω-wise stochastic viscosity solution, which will lead to the uniqueness results. As the byproducts we extend the measurable section theorem of Dellacherie and Meyer (1978), and a fundamental lemma of Crandall et al. (1992)  相似文献   

2.
Using the decomposition of solution of SDE, we consider the stochastic optimal control problem with anticipative controls as a family of deterministic control problems parametrized by the paths of the driving Wiener process and of a newly introduced Lagrange multiplier stochastic process (nonanticipativity equality constraint). It is shown that the value function of these problems is the unique global solution of a robust equation (random partial differential equation) associated to a linear backward Hamilton-Jacobi-Bellman stochastic partial differential equation (HJB SPDE). This appears as limiting SPDE for a sequence of random HJB PDE's when linear interpolation approximation of the Wiener process is used. Our approach extends the Wong-Zakai type results [20] from SDE to the stochastic dynamic programming equation by showing how this arises as average of the limit of a sequence of deterministic dynamic programming equations. The stochastic characteristics method of Kunita [13] is used to represent the value function. By choosing the Lagrange multiplier equal to its nonanticipative constraint value the usual stochastic (nonanticipative) optimal control and optimal cost are recovered. This suggests a method for solving the anticipative control problems by almost sure deterministic optimal control. We obtain a PDE for the “cost of perfect information” the difference between the cost function of the nonanticipative control problem and the cost of the anticipative problem which satisfies a nonlinear backward HJB SPDE. Poisson bracket conditions are found ensuring this has a global solution. The cost of perfect information is shown to be zero when a Lagrangian submanifold is invariant for the stochastic characteristics. The LQG problem and a nonlinear anticipative control problem are considered as examples in this framework  相似文献   

3.
We show that a broad class of fully nonlinear, second‐order parabolic or elliptic PDEs can be realized as the Hamilton‐Jacobi‐Bellman equations of deterministic two‐person games. More precisely: given the PDE, we identify a deterministic, discrete‐time, two‐person game whose value function converges in the continuous‐time limit to the viscosity solution of the desired equation. Our game is, roughly speaking, a deterministic analogue of the stochastic representation recently introduced by Cheridito, Soner, Touzi, and Victoir. In the parabolic setting with no u‐dependence, it amounts to a semidiscrete numerical scheme whose timestep is a min‐max. Our result is interesting, because the usual control‐based interpretations of second‐order PDEs involve stochastic rather than deterministic control. © 2009 Wiley Periodicals, Inc.  相似文献   

4.
In this paper, we establish an equivalence relationship between the wellposedness of forward–backward SDEs (FBSDEs) with random coefficients and that of backward stochastic PDEs (BSPDEs). Using the notion of the “decoupling random field”, originally observed in the well-known Four Step Scheme (Ma et al., 1994 [13]) and recently elaborated by Ma et al. (2010) [14], we show that, under certain conditions, the FBSDE is wellposed if and only if this random field is a Sobolev solution to a degenerate quasilinear BSPDE, extending the existing non-linear Feynman–Kac formula to the random coefficient case. Some further properties of the BSPDEs, such as comparison theorem and stability, will also be discussed.  相似文献   

5.
《偏微分方程通讯》2013,38(3):335-375
ABSTRACT

We study the homogenization of “viscous” Hamilton–Jacobi equations in stationary ergodic media. The “viscosity” and the spatial oscillations are assumed to be of the same order. We identify the asymptotic (effective) equation, which is a first-order deterministic Hamilton–Jacobi equation. We also provide examples that show that the associated macroscopic problem does not admit suitable solutions (correctors). Finally, we present as applications results about large deviations of diffusion processes and front propagation (asymptotics of reaction-diffusion equations) in random environments.  相似文献   

6.
In Monte Carlo methods quadrupling the sample size halves the error. In simulations of stochastic partial differential equations (SPDEs), the total work is the sample size times the solution cost of an instance of the partial differential equation. A Multi-level Monte Carlo method is introduced which allows, in certain cases, to reduce the overall work to that of the discretization of one instance of the deterministic PDE. The model problem is an elliptic equation with stochastic coefficients. Multi-level Monte Carlo errors and work estimates are given both for the mean of the solutions and for higher moments. The overall complexity of computing mean fields as well as k-point correlations of the random solution is proved to be of log-linear complexity in the number of unknowns of a single Multi-level solve of the deterministic elliptic problem. Numerical examples complete the theoretical analysis.  相似文献   

7.
This article is devoted to the study of fully nonlinear stochastic Hamilton-Jacobi(HJ) equations for the optimal stochastic control problem of ordinary differential equations with random coefficients. Under the standard Lipschitz continuity assumptions on the coefficients, the value function is proved to be the unique viscosity solution of the associated stochastic HJ equation.  相似文献   

8.
Recent important generalizations by G. Adomian (“Stochastic Systems”, Academic Press 1983) have extended the scope of his decomposition method for nonlinear stochastic operator equations (see also iterative method, inverse operator method, symmetrized method, or stochastic Green's function method) very considerably so that they are now applicable to differential, partial differential, delay, and coupled equations which may be strongly nonlinear and/or strongly stochastic (or linear or deterministic as subcases). Thus, for equations modeling physical problems, solutions are obtained rapidly, easily, and accurately. The methodology involves an analytic parametrization in which certain polynomials An, dependent on the nonlinearity, are derived. This paper establishes simple symmetry rules which yield Adomian's polynomials quickly to high orders.  相似文献   

9.
In this paper we continue exploring the notion of weak solution of forward?Cbackward stochastic differential equations (FBSDEs) and associated forward?Cbackward martingale problems (FBMPs). The main purpose of this work is to remove the constraints on the martingale integrands in the uniqueness proofs in our previous work (Ma et?al. in Ann Probab 36(6):2092?C2125, 2008). We consider a general class of non-degenerate FBSDEs in which all the coefficients are assumed to be essentially only bounded and uniformly continuous, and the uniqueness is proved in the space of all the square integrable adapted solutions, the standard solution space in the FBSDE literature. A new notion of semi-strong solution is introduced to clarify the relations among different definitions of weak solution in the literature, and it is in fact instrumental in our uniqueness proof. As a by-product, we also establish some a priori estimates of the second derivatives of the solution to the decoupling quasilinear PDE.  相似文献   

10.
The decomposition method (G. Adomian, “Stochastic Systems,” Academic Press, New York, 1983) developed to solve nonlinear stochastic differential equations has recently been generalized to nonlinear (and/or) stochastic partial differential equations, systems of equations, and delay equations and applied to diverse applications. As pointed out previously (see reference above) the methodology is an operator method which can be used for nondifferential operators as well. Extension has also been made to algebraic equations involving real or complex coefficients. This paper deals specifically with quadratic, cubic, and general higher-order polynomial equations and negative, or nonintegral powers, and random algebraic equations. Further work on this general subject appears elsewhere (G. Adomian, “Stochastic Systems II,” Academic Press, New York, in press).  相似文献   

11.
A (stochastic) operator-theoretic approach leads to expresssions for inverses of linear and nonlinear stochastic operators—useful for the solution of linear or nonlinear stochastic differential equations. Operator equations are developed for inverses of linear or nonlinear stochastic operators. Series expressions are obtained which allow writing the solution y=F?1x of the operator equation Fy=x. Special cases are studied in which F may be linear or nonlinear, deterministic or stochastic in various combinations.  相似文献   

12.
In a previous paper we gave a new formulation and derived the Euler equations and other necessary conditions to solve strong, pathwise, stochastic variational problems with trajectories driven by Brownian motion. Thus, unlike current methods which minimize the control over deterministic functionals (the expected value), we find the control which gives the critical point solution of random functionals of a Brownian path and then, if we choose, find the expected value.This increase in information is balanced by the fact that our methods are anticipative while current methods are not. However, our methods are more directly connected to the theory and meaningful examples of deterministic variational theory and provide better means of solution for free and constrained problems. In addition, examples indicate that there are methods to obtain nonanticipative solutions from our equations although the anticipative optimal cost function has smaller expected value.In this paper we give new, efficient numerical methods to find the solution of these problems in the quadratic case. Of interest is that our numerical solution has a maximal, a priori, pointwise error of O(h3/2) where h is the node size. We believe our results are unique for any theory of stochastic control and that our methods of proof involve new and sophisticated ideas for strong solutions which extend previous deterministic results by the first author where the error was O(h2).We note that, although our solutions are given in terms of stochastic differential equations, we are not using the now standard numerical methods for stochastic differential equations. Instead we find an approximation to the critical point solution of the variational problem using relations derived from setting to zero the directional derivative of the cost functional in the direction of simple test functions.Our results are even more significant than they first appear because we can reformulate stochastic control problems or constrained calculus of variations problems in the unconstrained, stochastic calculus of variations formulation of this paper. This will allow us to find efficient and accurate numerical solutions for general constrained, stochastic optimization problems. This is not yet being done, even in the deterministic case, except by the first author.  相似文献   

13.
Unique existence of analytically strong solutions to stochastic partial differential equations (SPDE) with drift given by the subdifferential of a quasi-convex function and with general multiplicative noise is proven. The proof applies a genuinely new method of weighted Galerkin approximations based on the “distance” defined by the quasi-convex function. Spatial regularization of the initial condition analogous to the deterministic case is obtained. The results yield a unified framework which is applied to stochastic generalized porous media equations, stochastic generalized reaction–diffusion equations and stochastic generalized degenerated p-Laplace equations. In particular, higher regularity for solutions of such SPDE is obtained.  相似文献   

14.

In this paper we prove the existence of a unique solution for a class of stochastic parabolic partial differential equations in bounded domains, with Dirichlet boundary conditions. The main tool is an equivalence result, provided by the stochastic characteristics method, between the stochastic equations under investigation and a class of deterministic parabolic equations with moving boundaries, depending on random coefficients. We show the existence of the solution to this last problem, thus providing a solution to the former.  相似文献   

15.
In this paper, we consider a system of initial-boundary value problems for parabolic equations, as a generalized version of the “φ-η-θ model” of grain boundary motion, proposed by Kobayashi (2001). The system is a coupled system of an Allen–Cahn-type equation with a given temperature source and a phase-field model of grain boundary motion, known as “Kobayashi–Warren–Carter-type model.” The focus of the study is on a special kind of solution, called energy-dissipative solution, which is to reproduce the energy-dissipation of the governing energy in time. Under suitable assumptions, two Main Theorems, concerned with the existence of energy-dissipative solution and and the large-time behavior, will be demonstrated as the results of this paper.  相似文献   

16.
In this paper, we prove some random fixed point theorems for Hardy–Rogers self-random operators in separable Banach spaces and, as some applications, we show the existence of a solution for random nonlinear integral equations in Banach spaces. Some stochastic versions of deterministic fixed point theorems for Hardy–Rogers self mappings and stochastic integral equations are obtained.  相似文献   

17.
In the paper, we apply the generalized polynomial chaos expansion and spectral methods to the Burgers equation with a random perturbation on its left boundary condition. Firstly, the stochastic Galerkin method combined with the Legendre–Galerkin Chebyshev collocation scheme is adopted, which means that the original equation is transformed to the deterministic nonlinear equations by the stochastic Galerkin method and the Legendre–Galerkin Chebyshev collocation scheme is used to deal with the resulting nonlinear equations. Secondly, the stochastic Legendre–Galerkin Chebyshev collocation scheme is developed for solving the stochastic Burgers equation; that is, the stochastic Legendre–Galerkin method is used to discrete the random variable meanwhile the nonlinear term is interpolated through the Chebyshev–Gauss points. Then a set of deterministic linear equations can be obtained, which is in contrast to the other existing methods for the stochastic Burgers equation. The mean square convergence of the former method is analyzed. Numerical experiments are performed to show the effectiveness of our two methods. Both methods provide alternative approaches to deal with the stochastic differential equations with nonlinear terms.  相似文献   

18.
A procedure reported elsewhere for solution of linear and nonlinear, deterministic or stochastic, delay differential equations developed by the authors as an extension of the first author's methods for nonlinear stochastic differential equations is now applied to a nonlinear delay-differential equation arising in population problems and studied by Kakutani and Markus. Examples involving time-dependent constants and even stochastic coefficients and delays can also be done.  相似文献   

19.
Systems of n coupled linear or nonlinear differential equations which may be deterministic or stochastic are solved by methods of the first author and his co-workers. Examples include two coupled Riccati equations, coupled linear equations, stochastic coupled equations with product terms, and n coupled stochastic differential equations.  相似文献   

20.
We formulate and solve the martingale problem in a nonlinear expectation space. Unlike the classical work of Stroock and Varadhan (Commun Pure Appl Math 22:345–400, 479–530, 1969) where the linear operator in the associated PDE is naturally defined from the corresponding diffusion process, the main difficulty in the nonlinear setting is to identify an appropriate class of nonlinear operators for the associated fully nonlinear PDEs. Based on the analysis of the martingale problem, we introduce the notion of weak solution for stochastic differential equations under nonlinear expectations and obtain an existence theorem under the Lipschitz continuity condition of the coefficients. The approach to establish the existence of weak solutions generalizes the classical Girsanov transformation method in that it no longer requires the two (probability) measures to be absolutely continuous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号