首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A neural fuzzy control system with structure and parameter learning   总被引:8,自引:0,他引:8  
A general connectionist model, called neural fuzzy control network (NFCN), is proposed for the realization of a fuzzy logic control system. The proposed NFCN is a feedforward multilayered network which integrates the basic elements and functions of a traditional fuzzy logic controller into a connectionist structure which has distributed learning abilities. The NFCN can be constructed from supervised training examples by machine learning techniques, and the connectionist structure can be trained to develop fuzzy logic rules and find membership functions. Associated with the NFCN is a two-phase hybrid learning algorithm which utilizes unsupervised learning schemes for structure learning and the backpropagation learning scheme for parameter learning. By combining both unsupervised and supervised learning schemes, the learning speed converges much faster than the original backpropagation algorithm. The two-phase hybrid learning algorithm requires exact supervised training data for learning. In some real-time applications, exact training data may be expensive or even impossible to obtain. To solve this problem, a reinforcement neural fuzzy control network (RNFCN) is further proposed. The RNFCN is constructed by integrating two NFCNs, one functioning as a fuzzy predictor and the other as a fuzzy controller. By combining a proposed on-line supervised structure-parameter learning technique, the temporal difference prediction method, and the stochastic exploratory algorithm, a reinforcement learning algorithm is proposed, which can construct a RNFCN automatically and dynamically through a reward-penalty signal (i.e., “good” or “bad” signal). Two examples are presented to illustrate the performance and applicability of the proposed models and learning algorithms.  相似文献   

2.
A kind of real-time stable self-learning fuzzy neural network (FNN) control system is proposed in this paper. The control system is composed of two parts: (1) A FNN controller which use genetic algorithm (GA) to search optimal fuzzy rules and membership functions for the unknown controlled plant; (2) A supervisor which can guarantee the stability of the control system during the real-time learning stage, since the GA has some random property which may cause control system unstable. The approach proposed in this paper combine a priori knowledge of designer and the learning ability of FNN to achieve optimal fuzzy control for an unknown plant in real-time. The efficiency of the approach is verified by computer simulation.  相似文献   

3.
This paper presents a fuzzy algorithm for controlling original unstable periodic orbits of unknown discrete chaotic systems. In the modeling phase, only input–output data pairs provided from the true system are required. The fuzzy model is developed using Gaussian membership functions and consequent functions where the Levenberg–Marquardt computational algorithm is employed for the model parameters calculation. In the controller design phase, the L2-stability criterion is used, which forms the basis of the main design principle. Simulation results are given to illustrate the effectiveness and control performance of the proposed method.  相似文献   

4.
In this paper a fuzzy neural network based on a fuzzy relational “IF-THEN” reasoning scheme is designed. To define the structure of the model different t-norms and t-conorms are proposed. The fuzzification and the defuzzification phases are then added to the model so that we can consider the model like a controller. A learning algorithm to tune the parameters that is based on a back-propagation algorithm and a recursive pseudoinverse matrix technique is introduced. Different experiments on synthetic and benchmark data are made. Several results using the UCI repository of Machine learning database are showed for classification and approximation tasks. The model is also compared with some other methods known in literature.  相似文献   

5.
In this paper, a fuzzy wavelet network is proposed to approximate arbitrary nonlinear functions based on the theory of multiresolution analysis (MRA) of wavelet transform and fuzzy concepts. The presented network combines TSK fuzzy models with wavelet transform and ROLS learning algorithm while still preserve the property of linearity in parameters. In order to reduce the number of fuzzy rules, fuzzy clustering is invoked. In the clustering algorithm, those wavelets that are closer to each other in the sense of the Euclidean norm are placed in a group and are used in the consequent part of a fuzzy rule. Antecedent parts of the rules are Gaussian membership functions. Determination of the deviation parameter is performed with the help of gold partition method. Here, mean of each function is derived by averaging center of all wavelets that are related to that particular rule. The overall developed fuzzy wavelet network is called fuzzy wave-net and simulation results show superior performance over previous networks.The present work is complemented by a second part which focuses on the control aspects and to be published in this journal([17]). This paper proposes an observer based self-structuring robust adaptive fuzzy wave-net (FWN) controller for a class of nonlinear uncertain multi-input multi-output systems.  相似文献   

6.
In this paper, a novel approach is presented to fine tune a direct fuzzy controller based on very limited information on the nonlinear plant to be controlled. Without any off-line pretraining, the algorithm achieves very high control performance through a two-stage algorithm. In the first stage, coarse tuning of the fuzzy rules (both rule consequents and membership functions of the premises) is accomplished using the sign of the dependency of the plant output with respect to the control signal and an overall analysis of the main operating regions. In stage two, fine tuning of the fuzzy rules is achieved based on the controller output error using a gradient-based method. The enhanced features of the proposed algorithm are demonstrated by various simulation examples.  相似文献   

7.
This research presents the exploratory results of using fuzzy-expert systems for incident detection and classification. The proposed system functions to detect not only the occurrence of incidents, but also their located lanes, and the resulting type of severity. With such information, the traffic control center can better advise drivers to take necessary lane changes and take timely actions for minimizing the incident impacts on traffic conditions. Although the current research remains exploratory in nature, as both the fuzzy membership functions and key parameters were determined empirically rather than fine-tuned with a neural network or genetic algorithm, the preliminary results have confirmed the promising properties of the proposed system.  相似文献   

8.
This paper proposes an observer based self-structuring robust adaptive fuzzy wave-net (FWN) controller for a class of nonlinear uncertain multi-input multi-output systems. The control signal is comprised of two parts. The first part arises from an adaptive fuzzy wave-net based controller that approximates the system structural uncertainties. The second part comes from a robust H based controller that is used to attenuate the effect of function approximation error and disturbance. Moreover, a new self structuring algorithm is proposed to determine the location of basis functions. Simulation results are provided for a two DOF robot to show the effectiveness of the proposed method.  相似文献   

9.
Given a fuzzy logic system, how can we determine the membership functions that will result in the best performance? If we constrain the membership functions to a specific shape (e.g., triangles or trapezoids) then each membership function can be parameterized by a few variables and the membership optimization problem can be reduced to a parameter optimization problem. The parameter optimization problem can then be formulated as a nonlinear filtering problem. In this paper we solve the nonlinear filtering problem using H state estimation theory. However, the membership functions that result from this approach are not (in general) sum normal. That is, the membership function values do not add up to one at each point in the domain. We therefore modify the H filter with the addition of state constraints so that the resulting membership functions are sum normal. Sum normality may be desirable not only for its intuitive appeal but also for computational reasons in the real time implementation of fuzzy logic systems. The methods proposed in this paper are illustrated on a fuzzy automotive cruise controller and compared to Kalman filtering based optimization.  相似文献   

10.
基于GA-BP的模糊神经网络控制器与Elman辨识器的系统设计   总被引:6,自引:0,他引:6  
提出了一种基于神经网络的模糊控制系统 ,该系统由模糊神经网络控制器和模型辨识网络组成 .文中介绍了模糊神经网络控制器采用遗传算法离线优化与 BP算法在线调整 ,给出了具体控制算法 ,推导了变形 Elmam网络的系统辨识算法 .仿真结果表明了此法的可行性和有效性 .  相似文献   

11.
用较少的模糊规则控制车流高峰期的交通信号,建立仿真系统模拟单交叉口二相位交通流,利用遗传算法对模糊规则进行优化并找出绿灯时间模糊集隶属函数的最优边界.实验结果表明,优化后的模糊规则对高峰期的车流变化具有更强的适应性.  相似文献   

12.
In this paper, a new hybrid method based on fuzzy neural network for approximate solution of fully fuzzy matrix equations of the form AX=DAX=D, where A and D are two fuzzy number matrices and the unknown matrix X is a fuzzy number matrix, is presented. Then, we propose some definitions which are fuzzy zero number, fuzzy one number and fuzzy identity matrix. Based on these definitions, direct computation of fuzzy inverse matrix is done using fuzzy matrix equations and fuzzy neural network. It is noted that the uniqueness of the calculated fuzzy inverse matrix is not guaranteed. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate solution of fuzzy matrix equations that supposedly has a unique fuzzy solution, a simple algorithm from the cost function of the fuzzy neural network is proposed. To illustrate the easy application of the proposed method, numerical examples are given and the obtained results are discussed.  相似文献   

13.
In this paper, a novel hybrid method based on fuzzy neural network for approximate solution of fuzzy linear systems of the form Ax = Bx + d, where A and B are two square matrices of fuzzy coefficients, x and d are two fuzzy number vectors, is presented. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate solution, a simple and fast algorithm from the cost function of the fuzzy neural network is proposed. Finally, we illustrate our approach by some numerical examples.  相似文献   

14.
Evolving fuzzy rule based controllers using genetic algorithms   总被引:9,自引:0,他引:9  
The synthesis of genetics-based machine learning and fuzzy logic is beginning to show promise as a potent tool in solving complex control problems in multi-variate non-linear systems. In this paper an overview of current research applying the genetic algorithm to fuzzy rule based control is presented. A novel approach to genetics-based machine learning of fuzzy controllers, called a Pittsburgh Fuzzy Classifier System # 1 (P-FCS1) is proposed. P-FCS1 is based on the Pittsburgh model of learning classifier systems and employs variable length rule-sets and simultaneously evolves fuzzy set membership functions and relations. A new crossover operator which respects the functional linkage between fuzzy rules with overlapping input fuzzy set membership functions is introduced. Experimental results using P-FCS 1 are reported and compared with other published results. Application of P-FCS1 to a distributed control problem (dynamic routing in computer networks) is also described and experimental results are presented.  相似文献   

15.
Synaptic events in neural systems were described as generated by an apparatus @ possessing memory and encoding a fuzzy point process (the presynaptic discharge) into another N (the postsynaptic discharge). @ was considered to be a fuzzy automata, for which state membership is dependent on input membership and distribution as well as on a control exercised by other neural structures. In such a device, irregular input distributions favour a direct monotonic codification, whereas regular ones induce discontinuous and inverse relations between both fuzzy point processes. Both behaviors favour analogic and membership relations between the fuzzy input and output. However, there exist intermediate grades of irregularities which result in a context-free encoding, where similitude and equivalence relations predominate. The importance of such findings to neurophysiology is discussed.  相似文献   

16.
In this paper, navigation techniques for several mobile robots are investigated in a totally unknown environment. In the beginning, Fuzzy logic controllers (FLC) using different membership functions are developed and used to navigate mobile robots. First a fuzzy controller has been used with four types of input members, two types of output members and three parameters each. Next two types of fuzzy controllers have been developed having same input members and output members with five parameters each. Each robot has an array of sensors for measuring the distances of obstacles around it and an image sensor for detecting the bearing of the target. It is found that the FLC having Gaussian membership function is best suitable for navigation of multiple mobile robots. Then a hybrid neuro-fuzzy technique has been designed for the same problem. The neuro-fuzzy technique being used here comprises a neural network, which is acting as a pre processor for a fuzzy controller. The neural network considered for neuro-fuzzy technique is a multi-layer perceptron, with two hidden layers. These techniques have been demonstrated in simulation mode, which depicts that the robots are able to avoid obstacles and reach the targets efficiently. Amongst the techniques developed neuro-fuzzy technique is found to be most efficient for mobile robots navigation. Experimental verifications have been done with the simulation results to prove the authenticity of the developed neuro-fuzzy technique.  相似文献   

17.
A novel observer-base output feedback variable universe adaptive fuzzy controller is investigated in this paper. The contraction and expansion factor of variable universe fuzzy controller is on-line tuned and the accuracy of the system is improved. With the state-observer, a novel type of adaptive output feedback control is realized. A supervisory controller is used to force the states to be within the constraint sets. In order to attenuate the effect of both external disturbance and variable parameters on the tracking error and guarantee the states to be within the constraint sets, a robust controller is appended to the variable universe fuzzy controller. Thus, the robustness of system is improved. By Lyapunov method, the observer-controller system is shown to be stable. The overall adaptive control algorithm can guarantee the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. In the paper, we apply the proposed control algorithms to control the Duffing chaotic system and Chua’s chaotic circuit. Simulation results confirm that the control algorithm is feasible for practical application.  相似文献   

18.
This paper proposes a novel T‐S fuzzy control method instead of the traditional linear system control method to improve the TCP network performance. Thus a TCP network can be modeled as a T‐S fuzzy system, and by use of linear matrix inequality method and cone complementarity linearization algorithm, a fuzzy state feedback controller is provided while considering the problem of the asynchronous membership grades between the controller and the plant. Simulation results are presented to show that the proposed control approach can guarantee the asymptotical stability of the studied system and the desired queue size. © 2016 Wiley Periodicals, Inc. Complexity 21: 606–612, 2016  相似文献   

19.
In the past, the choices of β values to be applied to find the β-reducts in VPRS for an information system are somewhat arbitrary. In this study, a systematic method which bridges the fuzzy set methodology and probabilistic approach of RS to solve the threshold value β determination problem in variable precision rough sets (VPRS) is proposed. Different from the existing probabilistic methods, the proposed method relies on the fuzzy membership degrees of each attribute of the objects to calculate β. The proposed method gives the membership degrees and fuzzy aggregation operators the probabilistic interpretations. Based on the probabilistic interpretations, the threshold value β of VPRS is directly derived from fuzzy membership degree by Implication Relations and Fuzzy Algorithms, in which the membership degrees are obtained by the standard Fuzzy C-means method. The argument is that errors of system classification would occur in the fuzzy-clustering phase prior to information classification, therefore the threshold value β should be constrained by the probability of belongingness of an object to the fuzzy clusters, i.e., through the values of membership functions. A few examples are given in the paper to demonstrate the differences with other β-determining methods.  相似文献   

20.
《Mathematical Modelling》1987,8(9):669-690
We describe a new method for the fitting of differentiable fuzzy model functions to crisp data. The model functions can be either scalar or multidimensional and need not be linear. The data are n-component vectors. An efficient algorithm is achieved by restricting the fuzzy model functions to sets which depend on a fuzzy parameter vector and assuming that the vector has a conical membership function. The fuzzy model function, equated to zero, defines a fuzzy hypersurface in the n-space. The model fitting is done in a least-squares sense by minimizing the squares of the deviations from unity of the membership values of the fitted hypersurface at the observed points. Under the outlined restriction, the problem can be reduced to an ordinary least-squares formulation for which software is available.Application of the new method is illustrated by two examples. In one example, we are concerned with the hazards caused by enemy fire on armor. An important item of information for the assessment of the involved risks is a predictive model for the hole size in terms of physical properties of the projectile and target plate, respectively. We use a non-linear fuzzy model function for this analysis. The second example involves a linear model function and is of theoretical interest because it allows comparison of the new method with a previously developed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号