首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three different implicit finite difference schemes for solving the two-dimensional parabolic inverse problem with temperature overspecification are considered. These schemes are developed for indentifying the control parameter which produces, at any given time, a desired temperature distribution at a given point in the spatial domain. The numerical methods discussed, are based on the second-order (5,1) Backward Time Centered Space (BTCS) implicit formula, and the second-order (5,5) Crank-Nicolson implicit finite difference formula and the fourth-order (9,9) implicit scheme. These finite difference schemes are unconditionally stable. The (9,9) implicit formula takes a huge amount of CPU time, but its fourth-order accuracy is significant. The results of a numerical experiment are presented, and the accuracy and central processor (CPU) times needed for each of the methods are discussed and compared. The implicit finite difference schemes use more central processor times than the explicit finite difference techniques, but they are stable for every diffusion number.  相似文献   

2.
In this paper, numerical solutions of fractional Fokker–Planck equations with Riesz space fractional derivatives have been developed. Here, the fractional Fokker–Planck equations have been considered in a finite domain. In order to deal with the Riesz fractional derivative operator, shifted Grünwald approximation and fractional centred difference approaches have been used. The explicit finite difference method and Crank–Nicolson implicit method have been applied to obtain the numerical solutions of fractional diffusion equation and fractional Fokker–Planck equations, respectively. Numerical results are presented to demonstrate the accuracy and effectiveness of the proposed numerical solution techniques. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Yali Gao 《Applicable analysis》2018,97(13):2288-2312
In this paper, Galerkin finite methods for two-dimensional regularized long wave and symmetric regularized long wave equation are studied. The discretization in space is by Galerkin finite element method and in time is based on linearized backward Euler formula and extrapolated Crank–Nicolson scheme. Existence and uniqueness of the numerical solutions have been shown by Brouwer fixed point theorem. The error estimates of linearlized Crank–Nicolson method for RLW and SRLW equations are also presented. Numerical experiments, including the error norms and conservation variables, verify the efficiency and accuracy of the proposed numerical schemes.  相似文献   

4.
In this article, a Newton linearized compact finite difference scheme is proposed to numerically solve a class of Sobolev equations. The unique solvability, convergence, and stability of the proposed scheme are proved. It is shown that the proposed method is of order 2 in temporal direction and order 4 in spatial direction. Moreover, compare to the classical extrapolated Crank‐Nicolson method or the second‐order multistep implicit–explicit methods, the proposed scheme is easier to be implemented as it only requires one starting value. Finally, numerical experiments on one and two‐dimensional problems are presented to illustrate our theoretical results.  相似文献   

5.
The difference method with intrinsic parallelism for two dimensional parabolic system is studied. The general alternating difference schemes, in particular those with variable time steplengthes, are constructed and proved to be unconditionally stable. The two dimensional alternating group explicit scheme, alternating block explicit‐implicit scheme, alternating block Crank‐Nicolson scheme and block ADI scheme are the special cases of the general schemes constructed here. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 625–636, 1999  相似文献   

6.
The general alternating schemes with intrinsic parallelism for semilinear parabolic systems are studied. First we prove the a priori estimates in the discrete H1 space of the difference solution for these schemes. Then the existence of the difference solution for these schemes follows from the fixed point principle. Finally the unconditional stability of the general alternating schemes is proved. The alternating group explicit scheme, the alternating segment explicit–implicit scheme and the alternating segment Crank–Nicolson scheme are the special cases of the general alternating schemes.  相似文献   

7.
We consider the initial value problem for the Klein‐Gordon equation in de Sitter spacetime. We use the central difference scheme on the temporal discretization. We also discretize the spatial variable using the finite element method with implicit and the Crank‐Nicolson schemes for the numerical solution of the initial value problem. In order to show the accuracy for the results of the solutions, we also examine the finite difference methods. We observe that the numerical results obtained by using these methods are compatible.  相似文献   

8.
This paper studies the Neimark–Sacker bifurcation of a diffusive food‐limited model with a finite delay and Dirichlet boundary condition by the backward Euler difference scheme, Crank‐Nicolson difference scheme, and nonstandard finite‐difference scheme. The existence of Neimark‐Sacker bifurcation at the equilibrium is obtained. Our results show that Crank‐Nicolson and nonstandard finite‐difference schemes are superior to the backward Euler difference scheme under the means of describing approximately the dynamics of the original system. Finally, numerical examples are provided to illustrate the analytical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Developement of numerical methods for obtaining approximate solutions to the three dimensional diffusion equation with an integral condition will be carried out. The numerical techniques discussed are based on the fully explicit (1,7) finite difference technique and the fully implicit (7,1) finite difference method and the (7,7) Crank‐Nicolson type finite difference formula. The new developed methods are tested on a problem. Truncation error analysis and numerical examples are used to illustrate the accuracy of the new algorithms. The results of numerical testing show that the numerical methods based on the finite difference techniques discussed in the present article produce good results. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 193–202, 2002; DOI 10.1002/num.1040  相似文献   

10.
In this work we construct and analyze some finite difference schemes used to solve a class of time‐dependent one‐dimensional convection‐diffusion problems, which present only regular layers in their solution. We use the implicit Euler or the Crank‐Nicolson method to discretize the time variable and a HODIE finite difference scheme, defined on a piecewise uniform Shishkin mesh, to discretize the spatial variable. In both cases we prove that the numerical method is uniformly convergent with respect to the diffusion parameter, having order near two in space and order one or 3/2, depending on the method used, in time. We show some numerical examples which illustrate the theoretical results, in the case of using the Euler implicit method, and give better numerical behaviour than that predicted theoretically, showing order two in time and order N?2log2N in space, if the Crank‐Nicolson scheme is used to discretize the time variable. Finally, we construct a numerical algorithm by combining a third order A‐stable SDIRK with two stages and a third‐order HODIE difference scheme, showing its uniformly convergent behavior, reaching order three, up to a logarithmic factor. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

11.
Three new fully implicit methods which are based on the (5,5) Crank-Nicolson method, the (5,5) N-H (Noye-Hayman) implicit method and the (9,9) N-H implicit method are developed for solving the heat equation in two dimensional space with non-local boundary conditions. The latter is fourth-order while the others are second-order. While the implicit methods developed here, like the scheme based on the standard implicit backward time centered space (BTCS) method, use a large amount of central processor (CPU) time, the high accuracy of the new fourth-order fully implicit scheme is significant. Like the BTCS method, the new methods are also unconditionally stable.  相似文献   

12.
In a Banach space, for the approximate solution of the Cauchy problem for the evolution equation with an operator generating an analytic semigroup, a purely implicit three-level semidiscrete scheme that can be reduced to two-level schemes is considered. Using these schemes, an approximate solution to the original problem is constructed. Explicit bounds on the approximate solution error are proved using properties of semigroups under minimal assumptions about the smoothness of the data of the problem. An intermediate step in this proof is the derivation of an explicit estimate for the semidiscrete Crank–Nicolson scheme. To demonstrate the generality of the perturbation algorithm as applied to difference schemes, a four-level scheme that is also reduced to two-level schemes is considered.  相似文献   

13.
In this paper, we use some finite difference methods in order to solve an atmospheric flow problem described by an advection–diffusion equation. This flow problem was solved by Clancy using forward‐time central space (FTCS) scheme and is challenging to simulate due to large errors in phase and amplitude which are generated especially over long propagation times. Clancy also derived stability limits for FTCS scheme. We use Von Neumann stability analysis and the approach of Hindmarsch et al. which is an improved technique over that of Clancy in order to obtain the region of stability of some methods such as FTCS, Lax–Wendroff (LW), Crank–Nicolson. We also construct a nonstandard finite difference (NSFD) scheme. Properties like stability and consistency are studied. To improve the results due to significant numerical dispersion or numerical dissipation, we derive a new composite scheme consisting of three applications of LW followed by one application of NSFD. The latter acts like a filter to remove the dispersive oscillations from LW. We further improve the composite scheme by computing the optimal temporal step size at a given spatial step size using two techniques namely; by minimizing the square of dispersion error and by minimizing the sum of squares of dispersion and dissipation errors.  相似文献   

14.
In this paper, we consider the Crank‐Nicolson extrapolation scheme for the 2D/3D unsteady natural convection problem. Our numerical scheme includes the implicit Crank‐Nicolson scheme for linear terms and the recursive linear method for nonlinear terms. Standard Galerkin finite element method is used to approximate the spatial discretization. Stability and optimal error estimates are provided for the numerical solutions. Furthermore, a fully discrete two‐grid Crank‐Nicolson extrapolation scheme is developed, the corresponding stability and convergence results are derived for the approximate solutions. Comparison from aspects of the theoretical results and computational efficiency, the two‐grid Crank‐Nicolson extrapolation scheme has the same order as the one grid method for velocity and temperature in H1‐norm and for pressure in L2‐norm. However, the two‐grid scheme involves much less work than one grid method. Finally, some numerical examples are provided to verify the established theoretical results and illustrate the performances of the developed numerical schemes.  相似文献   

15.
This study presents two computational schemes for the numerical approximation of solutions to eddy viscosity models as well as transient Navier–Stokes equations. The eddy viscosity model is one example of a class of Large Eddy Simulation models, which are used to simulate turbulent flow. The first approximation scheme is a first order single step method that treats the nonlinear term using a semi‐implicit discretization. The second scheme employs a two step approach that applies a Crank–Nicolson method for the nonlinear term while also retaining the semi‐implicit treatment used in the first scheme. A finite element approximation is used in the spatial discretization of the partial differential equations. The convergence analysis for both schemes is discussed in detail, and numerical results are given for two test problems one of which is the two dimensional flow around a cylinder. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

16.
Saul'yev‐type asymmetric schemes have been widely used in solving diffusion and advection equations. In this work, we show that Saul'yev‐type schemes can be derived from the exponential splitting of the semidiscretized equation which fundamentally explains their unconditional stability. Furthermore, we show that optimal schemes are obtained by forcing each scheme's amplification factor to match that of the exact amplification factor. A new second‐order explicit scheme is found for solving the advection equation with the identical amplification factor as the implicit Crank–Nicolson algorithm. Other new schemes for solving the advection–diffusion equation are also derived.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1961–1983, 2014  相似文献   

17.
Abstract

In recent years non-linear Black–Scholes models have been used to build transaction costs, market liquidity or volatility uncertainty into the classical Black–Scholes concept. In this article we discuss the applicability of implicit numerical schemes for the valuation of contingent claims in these models. It is possible to derive sufficient conditions, which are required to ensure the convergence of the backward differentiation formula (BDF) and Crank–Nicolson scheme (CN) scheme to the unique viscosity solution. These stability conditions can be checked a priori and convergent schemes can be constructed for a large class of non-linear models and payoff profiles. However, if these conditions are not satisfied we show that the schemes are not convergent or produce spurious solutions. We study the practical implications of the derived stability criterions on relevant numerical examples.  相似文献   

18.
Option pricing models are often used to describe the dynamic characteristics of prices in financial markets. Unlike the classical Black–Scholes (BS) model, the finite moment log stable (FMLS) model can explain large movements of prices during small time steps. In the FMLS, the second-order spatial derivative of the BS model is replaced by a fractional operator of order α which generates an α-stable Lévy process. In this paper, we consider the finite difference method to approximate the FMLS model. We present two numerical schemes for this approximation: the implicit numerical scheme and the Crank–Nicolson scheme. We carry out convergence and stability analyses for the proposed schemes. Since the fractional operator routinely generates dense matrices which often require high computational cost and storage memory, we explore three methods for solving the approximation schemes: the Gaussian elimination method, the bi-conjugate gradient stabilized method (Bi-CGSTAB) and the fast Bi-CGSTAB (FBi-CGSTAB) in order to compare the cost of calculations. Finally, two numerical examples with exact solutions are presented where we also use extrapolation techniques to achieve higher-order convergence. The results suggest that the proposed schemes are unconditionally stable and convergent, and the FMLS model is useful for pricing options.  相似文献   

19.
The aim of this article is to study the parabolic inverse problem of determination of the leading coefficient in the heat equation with an extra condition at the terminal. After introducing a new variable, we reformulate the problem as a nonclassical parabolic equation along with the initial and boundary conditions. The uniqueness and continuous dependence of the solution upon the data are demonstrated, and then finite difference methods, backward Euler and Crank–Nicolson schemes are studied. The results of some numerical examples are presented to demonstrate the efficiency and the rapid convergence of the methods. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

20.
In this article an error bound is derived for a piecewise linear finite element approximation of an enthalpy formulation of the Stefan problem; we have analyzed a semidiscrete Galerkin approximation and completely discrete scheme based on the backward Euler method and a linearized scheme is given and its convergence is also proved. A second‐order error estimates are derived for the Crank‐Nicolson Galerkin method. In the second part, a new class of finite difference schemes is proposed. Our approach is to introduce a new variable and transform the given equation into an equivalent system of equations. Then, we prove that the difference scheme is second order convergent. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号