首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The computation of an approximate solution of linear discrete ill-posed problems with contaminated data is delicate due to the possibility of severe error propagation. Tikhonov regularization seeks to reduce the sensitivity of the computed solution to errors in the data by replacing the given ill-posed problem by a nearby problem, whose solution is less sensitive to perturbation. This regularization method requires that a suitable value of the regularization parameter be chosen. Recently, Brezinski et al. (Numer Algorithms 49, 2008) described new approaches to estimate the error in approximate solutions of linear systems of equations and applied these estimates to determine a suitable value of the regularization parameter in Tikhonov regularization when the approximate solution is computed with the aid of the singular value decomposition. This paper discusses applications of these and related error estimates to the solution of large-scale ill-posed problems when approximate solutions are computed by Tikhonov regularization based on partial Lanczos bidiagonalization of the matrix. The connection between partial Lanczos bidiagonalization and Gauss quadrature is utilized to determine inexpensive bounds for a family of error estimates. In memory of Gene H. Golub. This work was supported by MIUR under the PRIN grant no. 2006017542-003 and by the University of Cagliari.  相似文献   

2.
A linear nonstationary Schrödinger type problem in a separable Hilbert space is approximately solved by a projection-difference method. The problem is discretized in space by the Galerkin method using finite-dimensional subspaces of finite-element type, and an implicit Euler scheme is used with respect to time. We establish error estimates uniform with respect to the time grid for the approximate solutions; as to the spatial variables, the estimates are given in the norm of the original space as well as in the energy norm. The estimates considered here not only permit one to prove the convergence of approximate solutions to the exact solution but also give a numerical characterization of the convergence rate.  相似文献   

3.
The conjugate gradient method is one of the most popular iterative methods for computing approximate solutions of linear systems of equations with a symmetric positive definite matrix A. It is generally desirable to terminate the iterations as soon as a sufficiently accurate approximate solution has been computed. This paper discusses known and new methods for computing bounds or estimates of the A-norm of the error in the approximate solutions generated by the conjugate gradient method.  相似文献   

4.
We study an approximate method for solving singular integral equations. It implies an approximation of a singular operator by means of a compound quadrature formula similar to the rectangle one. The corresponding systems of linear algebraic equations are solvable if so is the integral equation, while its coefficients satisfy the strong ellipticity condition. Under these restrictions we obtain a bound for the rate of convergence of solutions of systems of linear equations to the solution of the considered integral equation in the uniform vector norm.  相似文献   

5.
The paper investigates the Galerkin method for an initial boundary value problem for heat convection equations. New error estimates for the approximate solutions and their derivatives in strong norm are obtained.  相似文献   

6.
This article investigates the Galerkin method for an initial boundary value problem for heat convection equations. The new error estimates for the approximate solutions and their derivatives in strong norm are obtained.  相似文献   

7.
This paper presents and studies three two-grid stabilized quadratic equal-order finite element algorithms based on two local Gauss integrations for the steady Navier–Stokes equations with damping. In these algorithms, we first solve a stabilized nonlinear problem on a coarse grid, and then pass the coarse grid solution to a fine grid and solve a stabilized linear problem. Using some nonlinear analysis techniques, we analyze stability of the algorithms and derive optimal order error estimates of the approximate solutions. Theoretical and numerical results show that, when the algorithmic parameters are chosen appropriately, the accuracy of the approximate solutions computed by our two-grid stabilized algorithms is comparable to that of solving a fully stabilized nonlinear problem on the same fine grid; however, our two-grid algorithms save a large amount of CPU time than the one-grid stabilized algorithm.  相似文献   

8.
In this paper, we discuss several (old and new) estimates for the norm of the error in the solution of systems of linear equations, and we study their properties. Then, these estimates are used for approximating the optimal value of the regularization parameter in Tikhonov’s method for ill-conditioned systems. They are also used as a stopping criterion in iterative methods, such as the conjugate gradient algorithm, which have a regularizing effect. Several numerical experiments and comparisons with other procedures show the effectiveness of our estimates.  相似文献   

9.
Highly localized pointwise error estimates for a stabilized Galerkin method are provided for second-order non-selfadjoint elliptic partial differential equations. The estimates show a local dependence of the error on the derivative of the solution u and weak dependence on the global norm. The results in this paper are an extension of the previous pointwise error estimates for the self-adjoint problems. In order to provide pointwise error estimates in the presence of the first-order term in the differential equations, we prove that the stabilized Galerkin solution is higher order perturbation to the Ritz projection of the true solutions. Then, we proceed to obtain pointwise estimates using the so-called discrete Green’s function. Application to error expansion inequalities and a posteriori error estimators are briefly discussed.  相似文献   

10.
Summary Part I of this work deals with the forward error analysis of Gaussian elimination for general linear algebraic systems. The error analysis is based on a linearization method which determines first order approximations of the absolute errors exactly. Superposition and cancellation of error effects, structure and sparsity of the coefficient matrices are completely taken into account by this method. The most important results of the paper are new condition numbers and associated optimal component-wise error and residual estimates for the solutions of linear algebraic systems under data perturbations and perturbations by rounding erros in the arithmetic floating-point operations. The estimates do not use vector or matrix norms. The relative data and rounding condition numbers as well as the associated backward and residual stability constants are scaling-invariant. The condition numbers can be computed approximately from the input data, the intermediate results, and the solution of the linear system. Numerical examples show that by these means realistic bounds of the errors and the residuals of approximate solutions can be obtained. Using the forward error analysis, also typical results of backward error analysis are deduced. Stability theorems and a priori error estimates for special classes of linear systems are proved in Part II of this work.  相似文献   

11.
In this paper, the authors propose a Nyström method to approximate the solutions of Cauchy singular integral equations with constant coefficients having a negative index. They consider the equations in spaces of continuous functions with weighted uniform norm. They prove the stability and the convergence of the method and show some numerical tests that confirm the error estimates.  相似文献   

12.
In many applications, partial differential equations depend on parameters which are only approximately known. Using tools from functional analysis and global optimization, methods are presented for obtaining certificates for rigorous and realistic error bounds on the solution of linear elliptic partial differential equations in arbitrary domains, either in an energy norm, or of key functionals of the solutions, given an approximate solution. Uncertainty in the parameters specifying the partial differential equations can be taken into account, either in a worst case setting, or given limited probabilistic information in terms of clouds.  相似文献   

13.
An approximate method to solve the Cauchy problem for normal and canonical systems of second-order ordinary differential equations is proposed. The method is based on the representation of a solution and its derivative at each integration step in the form of partial sums of series in shifted Chebyshev polynomials of the first kind. A Markov quadrature formula is used to derive the equations for the approximate values of Chebyshev coefficients in the right-hand sides of systems. Some sufficient convergence conditions are obtained for the iterative method solving these equations. Several error estimates for the approximate Chebyshev coefficients and for the solution are given with respect to the integration step size.  相似文献   

14.
The averaging method is used to approximate solutions of systems of linearly coupled, (quadratic) non-linear dispersive wave equations, which describe extensional–torsional dynamics of a rod. Existence and uniqueness results are established. Error estimates confirm the asymptotic validity of the approximation method on a long time-scale. The linear couplings between the equations imply that resonance can occur inside a single mode of the solution, but energy can also be transferred to other modes.  相似文献   

15.
The mathematical model of the three‐dimensional semiconductor devices of heat conduction is described by a system of four quasi‐linear partial differential equations for initial boundary value problem. One equation of elliptic form is for the electric potential; two equations of convection‐dominated diffusion type are for the electron and hole concentration; and one heat conduction equation is for temperature. Upwind finite difference fractional step methods are put forward. Some techniques, such as calculus of variations, energy method multiplicative commutation rule of difference operators, decomposition of high order difference operators, and the theory of prior estimates and techniques are adopted. Optimal order estimates in L2 norm are derived to determine the error in the approximate solution.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

16.
Combining difference method and boundary integral equation method, we propose a new numerical method for solving initial-boundary value problem of second order hyperbolic partial differential equations defined on a bounded or unbounded domain inR 3 and obtain the error estimates of the approximate solution in energy norm and local maximum norm.China State Major Key Project for Basic Researches.  相似文献   

17.
The paper is devoted to verification of accuracy of approximate solutions obtained in computer simulations. This problem is strongly related to a posteriori error estimates, giving computable bounds for computational errors and detecting zones in the solution domain where such errors are too large and certain mesh refinements should be performed. A mathematical model consisting of a linear elliptic (reaction-diffusion) equation with a mixed Dirichlet/Neumann/Robin boundary condition is considered in this work. On the base of this model, we present simple technologies for straightforward constructing computable upper and lower bounds for the error, which is understood as the difference between the exact solution of the model and its approximation measured in the corresponding energy norm. The estimates obtained are completely independent of the numerical technique used to obtain approximate solutions and are “flexible” in the sense that they can be, in principle, made as close to the true error as the resources of the used computer allow. This work was supported by the Academy Research Fellowship No. 208628 from the Academy of Finland.  相似文献   

18.
A solution to a smoothly solvable linear variational parabolic equation with the periodic condition is sought in a separable Hilbert space by an approximate projection-difference method using an arbitrary finite-dimensional subspace in space variables and the Crank–Nicolson scheme in time. Solvability, uniqueness, and effective error estimates for approximate solutions are proven. We establish the convergence of approximate solutions to a solution as well as the convergence rate sharp in space variables and time.  相似文献   

19.
The method of finding approximations to a solution and its derivatives is constructed for a certain class of integral Volterra equations of the first kind. Matching conditions for the regularization parameter and the error in the initial data are presented. Sharp (in terms of order) error estimates are obtained for approximate solutions on certain compact classes.  相似文献   

20.
This paper deals with the problem of norm bounds for the solutions of stochastic hybrid systems with Markovian switching and time delay.Based on Lyapunov-Krasovskii theory for functional differential equations and the linear matrix inequality(LMI)approach,mean square exponential estimates for the solutions of this class of linear stochastic hybrid systems are derived.Finally,An example is illustrated to show the applicability and effectiveness of our method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号