首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The separations of amino acids by Donnan dialysis using an ion-exchange membrane were studied. Donnan dialytic experiments were carried out using an anion-exchange membrane, glutamic acid–phenylalanine or glutamic acid–alanine mixed solutions as the feeds, and sodium hydroxide solutions as the stripping ones. The initial concentrations of the two kinds of amino acids in the feed solutions were equal and in the range of 0.5–50 mol m−3. The amino acid fluxes were measured for each feed solution. Above the feed concentration of 10 mol m−3, the glutamic acid flux was over 100 times greater than that of the other amino acid, and it was found that the Donnan dialysis was applicable to the separation of the amino acids. On the other hand, below 10 mol m−3, the amino acid fluxes varied in a complicated manner with the concentration, and below 1 mol m−3 there was little difference between the fluxes of the two amino acids.Furthermore, after soaking the membrane in solutions having the same concentrations as the feed in the Donnan dialysis, uptake of the amino acids into the membrane was also measured. By comparing the experimental results of both the flux and uptake of the amino acids, the reason why the flux varied in a complicated manner with the concentration was discussed.  相似文献   

2.
A porous hollow-fiber membrane containing an iminodiethanol (IDE) group as the chelate-forming group was applied to the recovery of antimony in the permeation mode. An antimony solution was forced to permeate through the pores of the chelating porous hollow-fiber membrane, driven by a transmembrane pressure. The membrane with a thickness of 0.7 mm and a porosity of 70% had an iminodiethanol group of 1.6 mol/kg of the membrane and a water flux of 0.95 m/h at 0.1 MPa and 298 K. The breakthrough curves of antimony overlapped irrespective of the permeation rate of the antimony solution ranging from 2 to 20 ml/min, i.e. the residence time across the membrane thickness ranging from 3.4 to 0.34 s, because of negligible diffusional mass-transfer resistance of the ionic species of antimony to the iminodiethanol group. At antimony concentrations below 10 mg/l (pH 4.0), a linear adsorption isotherm was obtained. The adsorbed antimony was quantitatively eluted by permeation of 2 M hydrochloric acid through the pores of the membrane.  相似文献   

3.
A perovskite-type oxide of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) with mixed electronic and oxygen ionic conductivity at high temperatures was used as an oxygen-permeable membrane. A tubular membrane of BSCFO made by extrusion method has been used in the membrane reactor to exclusively transport oxygen for the partial oxidation of ethane (POE) to syngas with catalyst of LiLaNiO/γ-Al2O3 at temperatures of 800–900 °C. After only 30 min POE reaction in the membrane reactor, the oxygen permeation flux reached at 8.2 ml cm−2 min−1. After that, the oxygen permeation flux increased slowly and it took 12 h to reach at 11.0 ml cm−2 min−1. SEM and EDS analysis showed that Sr and Ba segregations occurred on the used membrane surface exposed to air while Co slightly enriched on the membrane surface exposed to ethane. The oxygen permeation flux increased with increasing of concentration of C2H6, which was attributed to increasing of the driving force resulting from the more reducing conditions produced with an increase of concentration of C2H6 in the feed gas. The tubular membrane reactor was successfully operated for POE reaction at 875 °C for more than 100 h without failure, with ethane conversion of ∼100%, CO selectivity of >91% and oxygen permeation fluxes of 10–11 ml cm−2 min−1.  相似文献   

4.
Modification of poly(phthalazinone ether sulfone ketone) (PPESK) by sulfonation with concentrated or fuming sulfuric acid was carried out in order to prepare thermally stable polymers as membrane materials having increased hydrophilicity and potentially improved fouling-resistance. The sulfonated poly(phthalazinone ether sulfone ketone)s (SPPESK) were fabricated into ultrafiltration (UF) and nanofiltration (NF) asymmetric membranes. The effects of SPPESK concentration and the type and concentration of additives in the casting solution on membrane permeation flux and rejection were evaluated by using an orthogonal array experimental design in the separation of polyethyleneglycol (PEG12000 and PEG2000) and Clayton Yellow (CY, MW 695). One UF membrane formulation type had a 98% rejection rate for PEG12000 and a high pure water flux of 867 kg m−2 h−1. All the NF membranes made in the present study had rejections of ≥96%, and one had a high water flux of 160 kg m−2 h−1. Several of the NF membrane formulation types had ∼90% rejection for CY. When the membranes were operated at higher temperatures (80°C), the rejection rates declined slightly and pure water flux was increased more than two-fold. Rejection and flux values returned to previous values when the membranes were operated at room temperature again. Mono- and divalent salt rejections and fluxes were studied on an additional NF membrane set.  相似文献   

5.
This work reports the transmission of bovine albumin using 50k MWCO, 100k MWCO and 0.2 μm membranes under controlled fluxes and low transmembrane pressures. With the 50k MWCO membrane, the transmission remained low and when the flux was increased step by step, there was a sharp increase in transmission as the flux reached 50 lm−2 h−1. The concentration of bovine albumin was estimated at the membrane surface by the classical film theory and did not increase sharply. It is suggested that increasing extensional shear at the higher flux might change the conformation of BSA molecules. This sudden change in rejection was not observed when a 0.2 μm membrane was used. It was also observed that the transmission at iso-electric point of bovine albumin (pH 4.9) was much higher than that at either pH 3.5 or pH 8 under the same operating conditions.  相似文献   

6.
Thin film composite (TFC) membranes were prepared from sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) as a top layer coated onto poly(phthalazinone ether sulfone ketone) (PPESK) ultrafiltration (UF) support membranes. The effects of different preparation conditions such as the SPPESK concentration, organic additives, solvent, degree of substitution (DS) of SPPEK and curing treatment temperature and time on the membrane performance were studied. The SPPESK concentration in the coating solution was the dominant factor for the rejection and permeation flux. The TFC membranes prepared from glycerol as an organic additive show better performance then those prepared from other additives. The rejection increased and the flux decreased with increasing curing treatment temperatures. The salt rejections of the TFC nanofiltration (NF) membranes increased in the order MgCl2 < MgSO4 < NaCl < Na2SO4. TFC membranes showed high water flux at low pressure. SPPESK composite membranes rejections for a 1000 mg L−1 Na2SO4 feed solution was 82%, and solution flux was 68 L m−2 h−1 at 0.25 MPa pressure.  相似文献   

7.
Transmembrane pressure pulsing (TPP) uses the frequent and periodic reversal of the transmembrane pressure to reduce flux resistances due to membrane fouling. This study examined the effect of TPP on the microfiltration of simulated drinking water (hydrated aluminum silicate solution). Solutions of kaolin clay (0.1–4.0 μm particles, at an approximate concentration of 500 mg l−1 and a turbidity of 402±17 NTU, 0.5 mM CaCl, 2.0 mM NaHCO3, pH 7.5–7.8) were microfiltered with polyethersulfone (PES) 0.16 μm microfiltration membranes at an operating pressure of 30 kPa. Crossflow shear rates were varied between 165 and 1490 s−1. Pulse frequency was varied between 0.3×10−2 and 2 Hz, and pulse amplitude was varied between −3 and −16.5 kPa. It was found that the crossflow shear rates did not significantly effect the non-pulsed permeate flux. An optimum pulse amplitude of about 10 kPa was necessary to maximize the permeate flux for pulse frequencies between 0.3×10−2 and 2.0 Hz. To insure a reduced solute flux, pulse frequencies less than 0.1 Hz were required. These results indicate that TPP can significantly reduce membrane fouling by inorganic particulate materials that are potentially important constituents of natural waters without negatively impacting the rejection of sub-micron particles due to interactions with material accumulated on the membrane.  相似文献   

8.
The object of this work is to develop a simple and selective method for efficient extraction of Au(III) ions in aqueous solution using a new solid-phase extraction sorbent. Polyethylenimine (PEI) ion-exchange polymer was coated on alumina in the presence of NaNO3. The method is based on sorption of Au3+ ions on 50 mg PEI/Al2O3. A solution of 0.5 M thiourea, then 1.0 M HCl effectively eluted the gold ion and then aspirated into flame atomic absorption spectroscopy (FAAS). The influence of flow rate of sample solution and eluent, the pH effect, eluent type and sorption capacity was investigated. The effects of various diverse ions for preconcentration and separation of the gold ion were investigated. Relative standard deviation of 4.0 μg mL−1 of gold was 1.46% (n = 10). The detection limit was 26.2 ng L−1 in original solution. The method has been applied successfully for the recovery of trace amount of Au(III) ions from water samples.  相似文献   

9.
Low plutonium content acidic waste is generated in nuclear chemical facilities. Study was initiated to develop hollow fiber supported liquid membrane (HFSLM) technique for quantitative separation and recovery of plutonium (Pu) from such wastes using tri-n-butyle phosphate (TBP) in dodecane as carrier. Hollow fiber test module was fabricated using 20 lumens of 33.91 cm2 surface area and 9 cm length. After satisfactory testing of the hydrodynamic condition of the module, it was operated at a flow rate of 3 ml min−1 on recycling mode with acidic waste solution containing Pu=8 mg dm−3, uranium=15 dm−3, gross β=49.33 mCi dm−3, gross γ=15.73 mCi dm−3 and acidity 3 M HNO3. In presence of various fission products, selective permeation of Pu(IV) through the bundle of hollow fiber test module was observed to be more than 90% into a stripping phase consisting 0.1 M NH2OH·HCl in 0.3 M HNO3. A model is presented to describe the transport mechanism and to evaluate the mass transfer coefficient. The radiation stability was also tested by exposing the membrane upto irradiation level of 1 M rad. Potentiality of the method for the selective separation of plutonium from acidic waste is, thus, clearly seen.  相似文献   

10.
The dense dual phase composite membrane made from strontium-stabilized bismuth oxide and silver, (Bi2O3)0.74(SrO)0.26–Ag (40% v/o), was investigated. The composite was found to exhibit very high electrical conductivity at the room temperature, revealing that the silver phase has formed electron-conducting networks in the oxide matrix. The composite shows much improved oxygen permeability compared with the bismuth oxide alone. An oxygen flux of 5×10−8 mol cm−2 s−1 was observed for a 1.00 mm thick composite at 700°C with oxygen partial pressures of the feed and permeate side at 0.209, 0.0024 atm, respectively. Combination of electrical conductivity and oxygen permeation measurements reveals that oxygen-ion conduction through the oxide phase of the composite is the rate-limiting step for oxygen permeation.  相似文献   

11.
We report on Faradaic reactions producing H+ (anode) and OH (cathode) in flow-electrode capacitive deionization (FCDI) operated at 1.2 V. These reactions underline an additional electrodialytical desalination mechanism within capacitive deionization, which proceeds in parallel to the known electrosorption mechanism. Examination of flow-electrodes (100 ml each, 5% (wt) activated carbon) during FCDI (121 cm2 effective membrane area) of 150 ml, 4 g/l NaCl solution revealed that significant amounts of Na+ and Cl ions (up to 50% and 30% of Cl and Na+, respectively) were not adsorbed in the activated carbon particles but were rather dissolved in the aqueous phase of the flow-electrodes. Production of acid (resulting in pH  1.5) and base (pH  12.5) in the flow-anode and -cathode solutions was observed during the operation. Reverse pH behaviors were obtained during the regeneration of the flow-electrodes by potential reversal. pH neutralization of the flow-electrode solutions resulted in a sharp increase in both the desalination rate and the electric current of the FCDI cell. Reacting NaOH and HCl in a short-circuited FCDI cell resulted in NaCl production in the water compartment and pH neutralization of both flow-electrodes.Apparently reversible Faradaic reactions that occur on the flow electrodes in the FCDI can be dependent on the properties of the carbon material, electrolyte composition and applied operational parameters (e.g. cell potential) and need to be studied in further detailed investigations.  相似文献   

12.
Mixed sols were prepared by dissolving polyurethane (a 30 wt% solution in n-propanol, PU) and tetraethylorthosilicate (TEOS) in ethanol at PU:TEOS mass ratios of 1:2, 1:1, 2:1 and 3:1. Each of the sols was coated on a porous α-alumina support tube by the dipping method, and green membranes were heat-treated at 200°C for 1 h in an atmosphere of nitrogen. A PU membrane was also prepared with PU alone. The membranes were 5–6 μm thick. The polyurethane–silica membranes were swollen in benzene but only slightly in cyclohexane at room temperature. The degree of swelling in benzene decreased with increasing fractions of TEOS in the hybrid sols. The selectivity of benzene to cyclohexane was improved due to the suppression of swelling as a result of hybridization with TEOS. The total permeation flux and benzene/cyclohexane selectivity in the membrane prepared with a sol of PU:TEOS=1:1 were 3×10−5 kg m−2 s−1 and 19, respectively.  相似文献   

13.
A commercial centrifugal rotary membrane module was used for the ultrafiltration of oil–water emulsions (droplet radius 50–3000 nm). This configuration can achieve high shear rates (>105 s−1) which are decoupled from the bulk recirculation rate. Fluxes were in the pressure controlled regime above 600 rpm with transmembrane pressures up to 345 kPa. The pressure dependent flux behaviour suggests that concentration polarization or gel formation was minimal. The dominant back transport mechanism was determined by comparing various back transport mechanisms to the permeation drag force. Back transport mechanisms included Brownian diffusion, shear induced diffusion, lateral migration, viscous drag, centrifugal and DLVO forces. The effect of the membrane surface porosity and Sherwood's correction for Stokes's law on the permeation drag were also studied. Viscous drag was the dominant force on droplet sizes between 50–1000 nm and was the only mechanism which could overcome the permeation drag force. Lateral migration was significant for droplets between 1000–3000 nm which were present in small quantities.  相似文献   

14.
Cyclic voltammetry is used to study the transfer of a series of cations and anions across a room-temperature ionic liquid (RTIL) membrane composed of tridodecylmethylammonium cation (TDMA+) and tetrakis(pentafluorophenyl)borate anion (TPFPB), and supported by a thin (∼112 μm) microporous filter. Essential advantage of the thin membrane system is the substantial reduction of the ohmic potential drop, which is compensated in voltammetric measurements. Reversible partition of TPFPB allows fixing the potential difference at one membrane interface and polarizing the other membrane interface in a defined way. It is shown that the polarized potential window for the interface between an aqueous electrolyte solution and RTIL attains the value of ca. 0.7 V at the ambient temperature of 25 ± 2 °C. Tetraphenylarsonium tetraphenylborate hypothesis is used for the first time to estimate the standard Gibbs energies of ion transfer from water to RTIL and to establish the scale of the absolute potential differences. A linear Gibbs energy relationship is found for the ion transfer from water to RTIL and o-dichlorobenzene.  相似文献   

15.
In this article, a new kind of hairpin DNA Electrochemical biosensor using nitroacridone as electrochemical indicator was first designed, and used to detect BCR/ABL fusion gene in Chronic Myelogenous Leukemia (CML). The results indicated that in pH 7.0 Tris–HCl buffer solution, the oxidation peak current was linear with the concentration of complementary strand in the range of 6.2 × 10−8–3.1 × 10−7 mol/l with a detection limit of 5.3 × 10−9 mol/l. This new hairpin DNA electrochemical biosensor demonstrates its excellent specificity for single-base mismatch and complementary (dsDNA) after hybridization, and this probe has been used for assay of PCR product of a real sample with satisfactory result.  相似文献   

16.
Hybrid membranes were prepared using poly(vinyl alcohol) (PVA) and tetraethylorthosilicate (TEOS) via hydrolysis followed by condensation. The obtained membranes were characterized by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction and differential scanning calorimetry. The remarkable decrease in degree of swelling was observed with increasing TEOS content in membranes and is attributed to the formation of hydrogen and covalent bonds in the membrane matrix. The pervaporation performance of these membranes for the separation of water–acetic acid mixtures was investigated in terms of feed concentration and the content of TEOS used as crosslinking agent. The membrane containing 1:2 mass ratio of PVA and TEOS gave the highest separation selectivity of 1116 with a flux of 3.33 × 10−2 kg/m2 h at 30 °C for 10 mass% of water in the feed. Except for membrane M-1, the observed values of water flux are close to the values of total flux in the investigated composition range, signifying that the developed membranes are highly water selective. From the temperature dependence of diffusion and permeation values, the Arrhenius apparent activation parameters have been estimated. The resulting activation energy values, obtained for water permeation being lower than those of acetic acid permeation values, suggest that the membranes have higher separation efficiency. The activation energy values calculated for total permeation and water permeation are close to each other for all the membranes except membrane M-1, signifying that coupled-transport is minimal as due to higher selective nature of membranes. Further, the activation energy values for permeation of water and diffusion of water are almost equivalent, suggesting that both diffusion and permeation contribute almost equally to the pervaporation process. The negative heat of sorption values (ΔHs) for water in all the membranes suggests the Langmuir's mode of sorption.  相似文献   

17.
A simple and inexpensive laboratory-built flow injection vapor generation system coupled to atomic absorption spectrometry (FI-VG AAS) for inorganic and total mercury determination has been developed. It is based on the vapor generation of total mercury and a selective detection of Hg2 + or total mercury by varying the temperature of the measurement cell. Only the inorganic mercury is measured when the quartz cell is at room temperature, and when the cell is heated to 650 °C or higher the total Hg concentration is measured. The organic Hg concentration in the sample is calculated from the difference between the total Hg and Hg2 + concentrations. Parameters such as the type of acid (HCl or HNO3) and its concentration, reductant (NaBH4) concentration, carrier solution (HCl) flow rate, carrier gas flow rate, sample volume and quartz cell temperature, which influence FI-VG AAS system performance, were systematically investigated. The optimized conditions for Hg2 + and total Hg determinations were: 1.0 mol l 1 HCl as carrier solution, carrier flow rate of 3.5 ml min 1, 0.1% (m/v) NaBH4, reductant flow rate of 1.0 ml min 1 and carrier gas flow rate of 200 ml min 1. The relative standard deviation (RSD) is lower than 5.0% for a 1.0 μg l 1 Hg solution and the limit of quantification (LOQ, 10 s) is 55 ng g 1. Certified samples of dogfish muscle (DORM-1 and DORM-2) and non-certified fish samples were analyzed, using a 6.0 mol l 1 HCl solution for analyte extraction. The Hg2 + and CH3Hg+ concentrations found were in agreement with certified ones.  相似文献   

18.
Tetrahydrofuran (THF) is a strong aprotic solvent, commonly used in the pharmaceuticals industry due to its broad solvency for both polar and non-polar compounds. THF and water form a homogeneous azeotrope at 5.3 wt.% water thus simple distillation is not feasible to dehydrate THF below this concentration. Pervaporation offers a solution since it is not governed by vapour–liquid equilibria. However many polymer-based pervaporation membranes are cast utilizing THF as the casting solvent and so these membranes have a tendency to swell excessively in its presence. This results in poor separation performance and poor long-term stability and thus renders these membranes unsuitable for THF dehydration.In this study, a new membrane available from CM Celfa, CMC-VP-31 has been tested for the dehydration of THF. The membrane shows excellent performance when dehydrating THF with a flux of over 4 kg m−2 h−1 when dehydrating THF containing 10 wt.% water at 55 °C dropping to 0.12 kg m−2 h−1 at a water content of 0.3 wt.%. The permeances of water and THF in the membrane were calculated to be 11.76 × 10−6 and 7.36 × 10−8 mol m−2 s−1 Pa−1, respectively, at 25 °C and found to decrease in the membrane with increasing temperature to values of 6.71 × 10−6 and 1.63 × 10−8 mol m−2 s−1 Pa−1 at 55 °C. The flux and separation factor were both found to increase with an increase in temperature thus favouring the operation of CMC-VP-31 at high temperatures to optimize separation performance.  相似文献   

19.
Hybrid Li–air batteries with acidic catholyte offer high cell voltage and are stable with CO2 in air. However, the practical capacity of the acidic catholyte is limited by the low concentration of acids utilized and the limited solubility of the discharge products. Only weak acids or diluted strong acids with limited practical capacity are generally used due to the poor stability of the solid electrolyte in low pH solution. We show here the pH of high-concentration, strong acids can be increased to near neutral values by forming a buffer with imidazole additive, which can be used in hybrid Li–air batteries. With the addition of 6.06 mol L 1 of imidazole to 6 mol L 1 HCl, the solution has a mild pH of ~ 5.0, facilitating the operation of hybrid Li–air batteries with high practical capacity and stability.  相似文献   

20.
Ultrafiltration of either single protein solutions (lysozyme 14,300 g mol−1, pI=11; lactoferrin 80,000 g mol−1, pI=8–9) or mixed protein solution was performed with inorganic membranes (MMCO 300,000 g mol−1, pore radius 14 nm) chemically modified in order to bear either pyrophosphate (PP, anionic) or ethylenediamine (EDA, cationic) groups.The electrophoretic mobility of modified and unmodified zirconia particles fouled with proteins was similar whatever the grafted groups, meaning that the membrane surface was always made of adsorbed proteins during UF. In spite of that, for the UF of lysozyme/lactoferrin mixed solution, the maximum selectivity (S=lysozyme transmission/lactoferrin transmission=165) was observed with the EDA membrane and allowed an instantaneous purity of lysozyme in the permeate close to 100% to be achieved. Such high selectivitiy was mainly due to the negligible transmission of lactoferrin with the membrane modified with the EDA groups in the ionic strength range 0–100 mmol l−1 of NaCl at pH 7 (achieved either for mixed and single solutions).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号