首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
许小勇  潘靖  胡经国 《物理学报》2007,56(9):5476-5482
研究了交换偏置双层膜中界面存在二次以及双二次交换耦合下反铁磁磁矩转动及其交换各向异性.结果表明,其反铁磁膜中的磁矩转动存在可逆“恢复行为”、不可逆“半转动行为”、不可逆“倒转行为”以及不可逆“半倒转行为”四种情形,四种情形的出现强烈地依赖于界面二次、双二次耦合以及反铁磁膜厚度.其中可逆恢复行为情况下,系统出现交换偏置,而不可逆的半转、半倒转以及倒转情形,系统不出现交换偏置.特别地,在界面处仅存在双二次耦合的情形下,其界面双二次耦合常数J2≤0.1 σ关键词: 反铁磁自旋结构 交换各向异性 界面双二次耦合 交换偏置  相似文献   

2.
Xiao-Yong Xu 《Surface science》2009,603(5):814-818
By investigating the antiferromagnetic spin configuration, the exchange anisotropy and the interfacial spin-flop coupling in ferromagnetic/antiferromagnetic (FM/AF) bilayers have been discussed in detail. The results show that there are four possible cases for the AF spins, namely the reversible recovering case, irreversible half-rotating case, irreversible reversing and irreversible half-reversing cases. Moreover, the realization of the cases strongly depends on interface quadratic coupling, interface spin-flop (biquadratic) coupling and AF thickness. The magnetic phase diagram in terms of the AF thickness tAF, the interfacial bilinear coupling J1 and the spin-flop coupling J2 has been constructed. The corresponding critical parameters in which the exchange bias will occur or approach saturation have been also presented. Specially, the small spin-flop exchange coupling may result in an exchange bias without the interfacial bilinear exchange coupling. However, in general, the spin-flop exchange coupling can weaken or eliminate the exchange bias, but always enhances the coercivity greatly.  相似文献   

3.
The study of layered magnetic structures is one of the hottest topics in magnetism due to the growing attraction of applications in magnetic sensors and magnetic storage media, such as random access memory. For almost half a century, new discoveries have driven researchers to re-investigate magnetism in thin film structures. Phenomena such as giant magnetoresistance, tunneling magnetoresistance, exchange bias and interlayer exchange coupling led to new ideas to construct devices, based not only on semiconductors but on a variety of magnetic materials Upon cooling fine cobalt particles in a magnetic field through the Néel temperature of their outer antiferromagnetic oxide layer, Meiklejohn and Bean discovered exchange bias in 1956. The exchange bias effect through which an antiferromagnetic AF layer can cause an adjacent ferromagnetic F layer to develop a preferred direction of magnetization, is widely used in magnetoelectronics technology to pin the magnetization of a device reference layer in a desired direction. However, the origin and effects due to exchange interaction across the interface between antiferromagneic and ferromagnetic layers are still debated after about fifty years of research, due to the extreme difficulty associated with the determination of the magnetic interfacial structure in F/AF bilayers. Indeed, in an AF/F bilayer system, the AF layer acts as “the invisible man” during conventional magnetic measurements and the presence of the exchange coupling is evidenced indirectly through the unusual behavior of the adjacent F layer. Basically, the coercive field of the F layer increases in contact with the AF and, in some cases, its hysteresis loop is shifted by an amount called exchange bias field. Thus, AF/F exchange coupling generates a new source of anisotropy in the F layer. This induced anisotropy strongly depends on basic features such as the magnetocrystalline anisotropy, crystallographic and spin structures, defects, domain patterns etc of the constituant layers. The spirit of this topical issue is, for the first time, to gather and survey recent and original developments, both experimental and theoretical, which bring new insights into the physics of exchange bias. It has been planned in relation with an international workshop exclusively devoted to exchange bias, namely IWEBMN’04 (International Workshop on Exchange Bias in Magnetic Nanostructures) that took place in Anglet, in the south west of France, from 16th to 18th September 2004. The conference gathered worldwide researchers in the area, both experimentalists and theoreticians. Several research paths are particularly active in the field of magnetic exchange coupling. The conference, as well as this topical issue, which was also open to contributions from scientists not participating in the conference, has been organized according to the following principles: 1. Epitaxial systems: Since the essential behavior of exchange bias critically depends on the atomic-level chemical and spin structure at the interface between the ferromagnetic and antiferromagnetic components, epitaxial AF/F systems in which the quality of the interface and the crystalline coherence are optimized and well known are ideal candidates for a better understanding of the underlying physics of exchange bias. The dependence of exchange bias on the spin configurations at the interfaces can be accomplished by selecting different crystallographic orientations. The role of interface roughness can also be understood from thin-film systems by changing the growth parameters, and correlations between the interface structure and exchange bias can be made, as reported in this issue. 2. Out-of-plane magnetized systems: While much important work has been devoted to the study of structures with in-plane magnetization, little has been done on the study of exchange bias and exchange coupling in samples with out-of-plane magnetization. Some systems can exhibit either in-plane or out-of-plane exchange bias, depending on the field cooling direction. This is of particular interest since it allows probing of the three-dimensional spin structure of the AF layer. The interface magnetic configuration is extremely important in the perpendicular geometry, as the short-range exchange coupling competes with a long-range dipolar interaction; the induced uniaxial anisotropy must overcome the demagnetization energy to establish perpendicular anisotropy films. Those new studies are of primary importance for the magnetic media industry as perpendicular recording exhibits potential for strongly increased storage densities. 3. Parameters tuning exchange bias in polycrystalline samples and magnetic configurations: Different parameters can be used to tune the exchange bias coupling in polycrystalline samples similar to those used in devices. Particularly fascinating aspects are the questions of the appearance of exchange bias or coercivity in ferromagnet/antiferromagnet heterostructures, and its relation to magnetic configurations formed on either side of the interface. Several papers report on either growth choices or post preparation treatments that enable tuning of the exchange bias in bilayers. The additional complexity and novel features of the exchange coupled interface make the problem particularly rich. 4. Dynamics and magnetization reversal: Linear response experiments, such as ferromagnetic resonance, have been used with great success to identify interface, surface anisotropies and interlayer exchange in multilayer systems. The exchange bias structure is particularly well suited to study because interface driven changes in the spin wave frequencies in the ferromagnet can be readily related to interlayer exchange and anisotropy parameters associated with the antiferromagnet. Because the exchange bias is intimately connected with details of the magnetization process during reversal and the subsequent formation of hysteresis, considerations of time dependence and irreversible processes are also relevant. Thermal processes like the training effect manifesting itself in changes in the hysteretic characteristics depending on magnetic history can lead to changes in the magnetic configurations. This section contains an increasing number of investigations of dynamics in exchange bias coupled bilayers, and in particular those of the intriguing asymmetric magnetization reversal in both branches of a hysteresis loop. The Editors of the topical issue: Alexandra Mougin Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Sud, F-91405 Orsay, France Stéphane Mangin Laboratoire de Physique des Matériaux, UMR CNRS 7556, Université Henri Poincaré, F-54506 Nancy, France Jean-Francois Bobo Laboratoire de Physique de la Matière Condensée - NMH, FRE 2686 CNRS ONERA, 2 avenue Edouard Belin, F-31400 Toulouse, France Alois Loidl Experimentalphysik V, EKM, Institut für Physik, Universität Augsburg, Universitätsstrasse 1, D-86135, Augsburg, Germany  相似文献   

4.
Experimental evidence for misalignments between F anisotropy axes, AF anisotropy axes and the exchange bias field direction is shown in a CoFe/Ni0.38O0.62 system. The angular dependence of the remanent magnetization, the exchange bias field and the coercive field is studied as a function of the diluted NiO thickness. The exchange coupling leads to misalignments between the applied field during growth, the exchange bias field and the coercive field directions. It shows that two different interfacial spin frustrations are present, corresponding to pinned and unpinned spins contributions of the diluted NiO.  相似文献   

5.
研究铁磁/反铁磁/铁磁三层膜中界面存在二次以及双二次交换耦合下反铁磁磁矩转动及其交换各向异性.结果表明,其反铁磁膜中的磁矩转动存在可逆"恢复行为"、不可逆"连续倒转行为"以及不可逆"中断倒转行为"三种情形,三种情形的出现强烈地依赖于两界面处的线性耦合和双二次耦合.钉扎界面的交换耦合与旋转界面的交换耦合相互竞争,当钉扎界面耦合占主导时,反铁磁磁矩发生可逆"恢复行为",系统出现交换偏置.在旋转界面耦合占主导情形下,其线性耦合与双二次耦合也相互竞争,分别导致反铁磁磁矩发生不可逆"连续倒转行为"和不可逆"中断倒转行为",系统都不出现交换偏置,但矫顽场都得以增强.相关结论为实验上观测的磁滞能耗以及界面垂直耦合提供了可能的解释.  相似文献   

6.
Epitaxial Fe3O4/NiO bilayers were epitaxially grown on MgO(001) and Al2O3(0001) substrates to investigate the influence of the fully spin compensated (001) and the non-compensated (111) NiO interface planes between the ferromagnetic (F) and antiferromagnetic (AF) layers on the AF/F exchange coupling. Bilayers of different magnetite thicknesses and constant NiO thickness were investigated. The structural characterizations indicate a perfect epitaxy of the two layers for the both growth directions in the two Fe3O4/NiO/MgO(001) and NiO/Fe3O4/Al2O3(0001) systems. An epitaxial ferrimagnetic (Ni,Fe)Fe2O4 phase is observed at the AF/F interface when the NiO oxide is grown on the top of the Fe3O4 layer while a perfectly flat AF/F interface is observed in the Fe3O4/NiO/MgO(001) system exhibiting only a very slight interdiffusion. Magnetic measurements indicate a relative strong bias at 300 K for the bilayers grown on Al2O3(0001), which decreases with the inverse of the ferrimagnetic layer thickness as theoretically expected. On the contrary, a zero exchange biasing is observed at 300 K for the bilayers grown on MgO(001).  相似文献   

7.
Nanoparticles of ɛ-Fe2.8Cr0.2N system exhibit the exchange bias phenomenon due to the exchange coupling of the spins of the antiferromagnetic (AF) oxide/oxynitride surface layer and the ferromagnetic (FM) nitride core. Exchange bias is observed at 10 K both in the absence and presence of cooling field. Due to the interface disorder, a mixture of parallel and anti-parallel/perpendicular coupling of the AF and FM spins is observed. The roughness of AF-FM interface induces disorder due to the random exchange anisotropy. The saturation magnetization is also found to be drastically lowered as compared to parent ɛ-Fe3N. Below 58 K, the broad peak (T E T f ) in zero-field cooled (ZFC) magnetization curves indicates the presence of unidirectional anisotropy and spinglass-like ordering, that arises from the freezing of localized frustrated spins.   相似文献   

8.
This Letter reports on the exchange coupling between nanometric Co clusters and disordered MnPt thin films. It is found that, under field-cooling, the MnPt develops a bulk magnetization M_{AF}. The correlation between M_{AF} and the exchange bias H_{b} is studied using a different field-cooling procedure. From this, using a mean-field approach, it is shown that the effective field acting on the interface magnetization responsible for H_{b} is proportional to M_{AF}. This results is strong evidence in favor of the domain state model for exchange bias, in which H_{b} is correlated with the bulk magnetic state of the antiferromagnet, and not only restricted to its interface configuration.  相似文献   

9.
Exchange bias measurements of ferromagnetic/antiferromagnetic (F/AF) bilayers are typically performed with the magnetization of the F layer parallel to the AF interface. We describe measurements of Co/Pt multilayers with out-of-plane magnetic easy axis that are exchange biased with CoO. Field-cooling experiments with the applied field perpendicular and parallel to the sample plane exhibit loop shifts and enhanced coercivities. Modeling and comparison to biasing of samples with planar easy axis suggests such measurements provide a way to probe the spin projections at F/AF interfaces.  相似文献   

10.
In this paper we provide a review and overview of a series of works generated in our laboratory over the last 5 years. These works have described the development and evolution of a new paradigm for exchange bias in polycrystalline thin films with grain sizes in the range 5-15 nm. We have shown that the individual grains in the antiferromagnetic (AF) layer of exchange bias systems contain a single AF domain and reverse over an energy barrier which is grain volume dependent. We show that the AF grains are not coupled to each other and behave independently. Understanding this process and using designed measurement protocols has enabled us to determine unambiguously the blocking temperature distribution of the AF grains, the anisotropy constant (KAF) of the AF, understand the AF grain-setting process, and predict its magnetic viscosity. We can explain and predict the grain size and film thickness dependence of the exchange field Hex. We have also studied interfacial effects and shown that there are processes at the interface, which can occur independently of the bulk of the AF grains. We have seen these effects via studies of trilayers and also via the field dependence of the setting process which does not affect the blocking. From separate experiments we have shown that the disordered interfacial spins exist as spin clusters analogous to a spin glass. These clusters can order spontaneously at low temperatures or can be ordered by the setting field. We believe it is the degree of order of the interfacial spins that gives rise to the coercivity in exchange bias systems. Based on this new understanding of the behaviour of the bulk of the grains in the antiferromagnet and the interfacial spins we believe that we have now a new paradigm for the phenomenon of exchange bias in sputtered polycrystalline thin films. We emphasize that the phenomenological model does not apply to core-shell particles, epitaxial single-crystal films and large grain polycrystalline films.  相似文献   

11.
Yusuf Yüksel 《Physics letters. A》2018,382(19):1298-1304
We propose an atomistic model and present Monte Carlo simulation results regarding the influence of FM/AF interface structure on the hysteresis mechanism and exchange bias behavior for a spin valve type FM/FM/AF magnetic junction. We simulate perfectly flat and roughened interface structures both with uncompensated interfacial AF moments. In order to simulate rough interface effect, we introduce the concept of random exchange anisotropy field induced at the interface, and acting on the interface AF spins. Our results yield that different types of the random field distributions of anisotropy field may lead to different behavior of exchange bias.  相似文献   

12.
The structure dependence of exchange bias in ferromagnetic/antiferromagnetic (FM/AF) bilayers has been investigated in detail by extending Slonczewski's 'proximity magnetism' idea. Here three important parameters are discussed for FM/AF bilayers, i.e. interracial bilinear exchange coupling J1, interracial biquadratic (spin-flop) exchange coupling J2 and antiferromagnetic layer thickness tAF. The results show that both the occurrence and the variety of the exchange bias strongly depend on the above parameters. More importantly, the small spin-flop exchange coupling may result in an exchange bias without the interracial bilinear exchange coupling. However, in general, the spin-flop exchange coupling cannot result in the exchange bias. The corresponding critical parameters in which the exchange bias will occur or approach saturation are also presented.  相似文献   

13.
A Harres  J Geshev 《J Phys Condens Matter》2012,24(32):326004, 1-326004, 7
This work introduces a realistic model for the magnetic behavior of polycrystalline ferromagnet/antiferromagnet (FM/AF) systems with granular interfaces. It considers that, for strong enough interface exchange coupling, the AF layer breaks the adjacent FM into small-sized domains and that at the interface there exist grains with uncompensated spins interacting with the FM magnetizations; the classification of these grains as unstable (rotatable, responsible for a coercivity enhancement) or stable (adding to the bias) depends on both the anisotropy and the magnetic coupling with the adjacent FM. The distinctive characteristic of the model is that the effective rotatable anisotropy changes when the external magnetic field is varied resulting in a non-zero hard-axis coercivity, a feature commonly observed, though little understood and often ignored. The applicability of this model was checked on a typical magnetron-sputtered IrMn/Co bilayer and excellent agreement between experiment and simulation was achieved.  相似文献   

14.
Magnetically contrasted granular hetero‐nanostructures are prepared by seed‐mediated growth in polyol, properly combining two oxide phases with different magnetic order, ferrimagnetic (F) partially oxidized magnetite Fe3−xO4 and antiferromagnetic (AF) cobalt oxide. Spinel Fe3−xO4 nanoparticles are first synthesized and then used as seeds for rock salt CoO nanocrystals growth. Three different hetero‐nanostructure designs are realized, acting on the content ratio between the seeds and the deposit's precursors during the synthesis. For all of them, the spinel and the rock salt phases are confirmed by X‐ray diffraction and high‐resolution transmission electron microscopy. Both phases are obtained in high‐crystalline quality with a net epitaxial relationship between the two crystallographic lattices. Mössbauer spectrometry confirms the cobalt cation diffusion into the spinel seeds, giving favorable chemical interfacing with the rock salt deposit, thus prevailing its heterogeneous nucleation and consequently offering the best condition for exchange‐bias (EB) onset. Magnetic measurements confirm EB features. The overall magnetic properties are found to be a complex interplay between dipolar interactions, exchange anisotropy at the F/AF interface, and magnetocrystalline anisotropy enhancement in the F phase, due to Co2+ diffusion into iron oxide's crystalline lattice. These results underline the powerfulness of colloidal chemistry for functional granular hetero‐nanostructured material processing.  相似文献   

15.
The angular dependence of the hysteresis loops of ferromagnetic/antiferromagnetic (FM/AF) bilayer with a compensated interface is investigated by means of numerical simulation for a perfect single-crystalline AF layer having no AF domains at the FM/AF interface, as well as for a twinned AF layer. For applied magnetic field direction nearly parallel to the AF easy axis the completely reversible loops with finite exchange bias field have been obtained for the uniform case, while a large exchange bias has been found for the twinned case, in agreement with experimental results.  相似文献   

16.
The effect of optimum dilution of antiferromagnetic (AF)/ferromagnetic (FM) interface necessary for observance of positive exchange bias in ion-beam sputtered Si/Ir22Mn78 (t AF = 12, 18, 24 nm)/Co20Fe60B20(t FM = 6,9,15 nm) exchange coupled bilayers is investigated by magnetic annealing at 380, 420 and 460 °C for 1 h at 5 × 10-6 Torr in presence of 500 Oe magnetic field. While the coercivity of the exchange coupled FM layer decreases with the increase in annealing temperature irrespective of the value of t AF or t FM, the hysteresis loops however shift by ≈+ 10 Oe whenever the coercivity drops in the 10–15 Oe range. This is consistent with the phase diagram of exchange bias field and coercivity derived from Meiklejohn and Bean model. The X-ray diffraction and X-ray reflectivity measurements confirmed that the texture, grain size and interface roughness of IrMn/CoFeB bilayers are thickness dependent and are correlated to the observed magnetic response of the bilayers. The results establish that optimum dilution of the IrMn/CoFeB interface by thermally diffused Mn-spins is necessary in inducing the effective coupling between the IrMn domains and diluted CoFeB layer. It is further shown that the annealing temperature required for the optimum dilution of the CoFeB interface critically depends on the thickness of the layers.  相似文献   

17.
Electronic and magnetic structures of ferromagnetic (FM)/antiferromagnetic (AFM), Ni/FeF2(1 1 0), with a compensated AFM interface are investigated by using the full-potential linearized augmented plane-wave method. We find that magnetic structures at the AFM interface are perturbed by a contact with the FM material, where the superexchange interaction through the interface F excites and induces a small net moment at the AFM interface. These results predicted may play an important role for explaining the exchange bias in this system, and rule out the exchange bias mechanisms with the spin-flop coupling and the magnetic moment reorientation.  相似文献   

18.
We present Monte Carlo simulations of hysteresis loops of a model of a magnetic nanoparticle with a ferromagnetic core and an antiferromagnetic shell with varying values of the core/shell interface exchange coupling which aim to clarify the microscopic origin of exchange bias observed experimentally. We have found loop shifts in the field direction as well as displacements along the magnetization axis that increase in magnitude when increasing the interfacial exchange coupling. Overlap functions computed from the spin configurations along the loops have been obtained to explain the origin and magnitude of these features microscopically.  相似文献   

19.
In the investigations of antiferromagnetic (AF)/ferromagnetic (FM) bilayer samples, often distinct experimental techniques yield different values for the measured exchange anisotropy field (HE). We propose that the observed discrepancy may be accounted in part by the dependence of the unidirectional anisotropy with the value of the externally applied cooling field (h). Using a simple microscopic model for representing the AF/FM interface, which incorporates the effect of interface roughness, we show that the interface energy between the AF and FM layer indeed varies with h, as recently observed in anisotropic magnetoresistance measurements, lending support to our proposal.  相似文献   

20.
We have used soft X-ray resonant magnetic scattering (XRMS) to search for the presence of an effective ferromagnetic moment belonging to the antiferromagnetic (AF) layer which is in close contact with a ferromagnetic (F) layer. Taking advantage of the element specificity of the XRMS technique, we have measured hysteresis loops of both Fe and CoO layers of a CoO(40 Å)/Fe (150 Å) exchange bias bilayer. From these measurements we have concluded that the proximity of the F layer induces a magnetic moment in the AF layer. The F moment of the AF layer has two components: one is frozen and does not follow the applied magnetic field and the other one follows in phase the ferromagnetic magnetization of the F layer. The temperature dependence of the F components belonging to the AF layer is shown and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号