首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Compounds of the form (M1−xM′x)2CuO4−δ and related compounds where M and M′ are Y, various rare earths from La to Lu, and the alkaline earths Sr and Ba, have been investigated in connection with high temperature superconductivity. High temperature superconductivity is confirmed for the system (La1−xBax)2CuO4−δ, (La1−xSrx)2CuO4−δ and (Y1−xBax)2CuO4−δ with superconducting transition temperature Tc onsets of 30 K, 38 K and 90 K, respectively. We have found that the related systems (Eu1−xBax)2CuO4−δ and (Sm1−xBax)2CuO4−δ also exhibit high temperature superconductivity with Tc onsets of 95 K and 65 K, respectively. The highest Tc onset observed in this investigation was 97 K for a sample with the nominal composition of the spinel structure Y0.33Ba0.67Cu2O4−δ. Measurements of the specific heat C as a function of temperature T on a La0.8Sr0.2CuO4−δ sample reveal a break in slope in the C/T vs T curve at the Tc midpoint, but no clearly discernable jump in C at Tc. A linear term ≈ λ′T in C was observed at low temperature in the superconducting state.  相似文献   

2.
Perovskites of composition La1?x Srx(Mn1?x/2Nb x/2)O3 and La0.49Sr0.51(Mn1?y Nby)O3 have been synthesized and investigated. The substitution of nonmagnetic niobium ions for manganese was shown to lead to a transition from the metallic into the insulating state due to a decrease in the number of dissimilar (different-valence) manganese atoms in the lattice. In spite of the high resistivity, the niobium-containing perovskites exhibit a large magnetoresistive effect and ferromagnetic ordering. Small additions of Nb5+ to La0.49Sr0.51MnO3 stimulate the transition from the antiferromagnetic into the ferromagnetic state, whereas the substitution of Mg2+ for Mn stabilizes the antiferromagnetic state. It is supposed that the ferromagnetism in the insulating perovskites at hand is due to the positive superexchange of the Mn3+-O-Mn3+ type, and the magnetoresistive effect owes to the intergranular transfer of spin-polarized charge carriers and the suppression of magnetic nonuniformities by an applied magnetic field near T C.  相似文献   

3.
Sr1−x La x CuO2 (x=0.10−0.15) thin films with an infinite-layer type structure were grown on BaTiO3 buffered (001) SrTiO3 substrates by pulsed laser deposition (PLD). The evolution of the growth front was monitored, in-situ, by high-pressure reflection high-energy electron diffraction (RHEED), while the surface morphology was analyzed by means of atomic force microscopy (AFM), ex-situ. X-ray diffraction (XRD) was used to determine the evolution of the film structure with deposition and cooling parameters, as well as to study the type and level of epitaxial strain in the Sr1−x La x CuO2 films. The RHEED data showed that the Sr1−x La x CuO2 films grow on BaTiO3/SrTiO3 following a 2D or Stranski-Krastanov mechanism, depending on the La doping level. The transition point (critical thickness d c) from layer-by-layer like (2D) to island (3D) growth depends on the film stoichiometry: decreasing the La doping concentration x from 0.15 to 0.10, the critical thickness d c increases from ∼45 nm to ∼75 nm. In order to induce superconductivity, the Sr1−x La x CuO2 films were cooled down under reduction conditions. The as-deposited films showed semiconducting or metallic behavior, the resistivity decreasing with increasing La concentration. Post-deposition vacuum annealing resulted in a superconducting transition onset (but no zero resistance down to 4.2 K) only for some of the x=0.15 Sr1−x La x CuO2 films.  相似文献   

4.
The single crystals of La0.7Ba0.3(Mn1−xFex)O3 (x⩽0.28) and La0.7Ba0.3(Mn1−xAlx)O3 (x⩽0.15) compositions were grown using flux method and characterized by X-ray, electrical and magnetization measurements. The Fe-doping above x=0.2 destroys a long range ferromagnetic order thus leading to a spin glass state. It is found that insulating spin glasses exhibit a large magnetoresistance in the paramagnetic region which is comparable to that for ferromagnetic crystals showing metal–insulator transition close to TC. The magnetic behavior of La0.7Ba0.3(Mn1−xMex)O3 (Me=Fe, Cr, Al) ceramics is in agreement with superexchange magnetic interactions via oxygen.  相似文献   

5.
Oxygen ion conduction in La0.9Sr0.1Ga1−xMxO3−δ (M=Cr, Fe; x=0 – 0.20), LaGa1−xMxO3−δ (M=Co, Ni; x=0.20 – 0.60), LaGa1−x−yCoxMgyO3−δ (x=0.35 – 0.60; y=0.10 – 0.25) and LaGa0.85−xMg0.15(Nb0.33Mg0.66)xO3−δ (x=0 – 0.20) is reported. At temperatures below 1200 K the ionic conductivity of La(Ga,M)O3−δ (M=Co, Ni) increases with increasing oxygen nonstoichiometry, but is lower than for La(Ga,Mg)O3−δ and (La,Sr)GaO3−δ. Co-doping with Nb and Mg was found to result in decreasing ionic transport in La(Ga,Nb,Mg)O3−δ due to blocking of oxygen sites by Nb5+. Small additions of Fe to the B-site of La0.9Sr0.1GaO3−δ increase the ionic conductivity, whereas substitution of Cr for Ga has the opposite effect. Incorporation of transition metal cations into the Ga site leads to a higher p-type electronic conductivity in all studied perovskites. Paper presented at the 6th Euroconference on Solid Sate Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   

6.
7.
Synthesis of two novel series of intermetallic compounds Tb3(Fe1−xCox)27.4V1.6 (x=0,0.1, 0.2, 0.3, 0.4) and Dy3(Fe1−xCox)27.8V1.2 (x=0, 0.1, 0.2, 0.3) with the monoclinic Nd3(Fe,Ti)29-type structure (3:29) is presented. In the Dy series for x=0.4 a disordered variant of the hexagonal Th2Ni17-type structure is formed. The cell parameters decrease and the Curie temperature increases with increasing of the Co content. In the case of the Tb3(Fe1−xCox)27.4V1.6 series in the M(T) curve a magnetic transition is observed which is attributed to spin reorientation phenomena. This critical temperature decreases with increasing Co from 473 K for x=0.1 to 393 K for x=0.3, and was not observed in the case of 0.4. XRD patterns of magnetically aligned powder samples reveal the presence of a tilted magnetic structure.  相似文献   

8.
The elastic (G) and inelastic (Q ?1) properties of (Co45Fe45Zr10) x (Al2O3)100 ? x , Co x (CaF2)100 ? x , and Co x (PZT)100 ? x (x = 23–76 at %) nanocomposites obtained by ion-beam sputtering are studied in the temperature range 300–900 K. A significant rise in the Q Q ?1 (T) curve is observed at temperatures above 650 K, which is attributed to thermally activated migration of point defects under the conditions of confined geometry.  相似文献   

9.
Transition metal and rare earth diffusion coefficients at 1323 K in Dy2−yNdy(Fe1−xCox)14B were determined by field emission energy dispersive spectroscopy compositional analysis of diffusion couple specimens. Various arrangements of component materials and temperatures were examined in order to understand the mechanisms affecting diffusion of the components and to predict the stability of functionally graded microstructures consisting of a dysprosium-rich (Dy2−yNdy(Fe1−xCox)14B) outer layer and a neodymium-rich (Nd2(Fe1−xCox)14B) interior. Estimates of the mutual interdiffusion coefficients of Dy, Nd, Fe, and Co in this system were obtained from the preparation of arc melted and annealed polycrystalline specimens, assuming that the diffusion coefficients were independent of concentration (Grube solution). Fifteen diffusion couples were prepared and heat treated at 1323 K for various times in order to provide data for calculation of the diffusion coefficients. The results indicate that the diffusion coefficients of Fe and Co (DFe=3.28×10−10 cm2/s and DCo=7.63×10−10 cm2/s) were significantly higher at 1323 K in this system than those for Dy and Nd (DNd=2.3×10−12 cm2/s and DDy=2.9×10−12 cm2/s).  相似文献   

10.
11.
12.
Pressure dependence on superconducting transition temperature (Tc) was examined for iron-based superconductor LaFeAsO1?xFx, SmFeAsO1?xFx and LaFePO. The Tc’s increase largely for LaFePO and LaFeAsO1?xFx with a small increase of pressure. The electrical resistivity measurements reveal the pressure-induced superconductivity in undoped LaFeAsO and SmFeAsO. X-ray diffraction measurements were also performed under high pressure up to 10 GPa for LaFePO and LaFeAsO1?xFx system, where the anisotropic decrease of the lattice constants was observed with applying pressure.  相似文献   

13.
《Physics letters. A》1986,117(5):243-246
Magnetization measurements on the itinerant electron magnet Y(Co1−xAlx)2 up to 350 kOe have clearly revealed metamagnetic transitions in the paramagnetic region (0.07⩽x⩽0.11). The transition is sharp for low x, suggesting itinerant electron metamagnetism to exist in YCo2 at 1 MOe, while it is broadened and disappears upon the onset of ferromagnetism at x∼0.13.  相似文献   

14.
Dependence of dc magnetization, M, of La1?xSrxCrO3 (x=0.13, 0.15) polycrystalline specimens on external magnetic field, H, was measured at various temperatures. At higher temperatures above 274 K and 265 K for the specimens with x=0.13 and 0.15, respectively, almost linear relationships were observed, indicating paramagnetic property. At the lower temperatures, hystereses, indicating canted antiferromagnetic property, were observed in MH curves. The temperatures where the magnetic phase transition was observed showed agreement with those where base line shift was observed in differential scanning calorimetry (DSC) measurement. In the MH curves of La1?xSrxCrO3 (x=0.13, 0.15), saturation magnetization, Ms, was not observed at external magnetic fields as high as 70 kOe. At 226 K and 189 K for the specimens with x=0.13 and 0.15, respectively, structural phase transition from orthorhombic- to rhombohedral-distorted perovskite was observed in DSC curves. At the temperature, abrupt decreases of residual magnetization, Mr, and variation of temperature dependence of coercive force, Hc, were detected. We regard that the abrupt decrease of Mr and the variation of temperature dependence of Hc at the structural phase transition temperature can be ascribed to discontinuous variation of Cr–O–Cr angles.  相似文献   

15.
The electronic and magnetic structures of the Sn0.75 M 0.25O2 and Sn0.5 M 0.25Sb0.25O2 (M = Cr, Mn, Co, Ni) compounds with a structure that is derivative of the rutile structure are modeled using the ab initio spin-polarized tight-binding linear muffin-tin orbital (TB-LMTO) method. The magnetic moments of the transition metal atoms are calculated. The data obtained are used to analyze the influence of the composition of Sn1 ? x ? y M x Sb y O2 phases on their electronic spectra and the magnetic and transport characteristics.  相似文献   

16.
17.
A review of our investigations on single crystals of LnFeAsO1?xFx (Ln = La, Pr, Nd, Sm, Gd) and Ba1?xRbxFe2As2 is presented. A high-pressure technique has been applied for the growth of LnFeAsO1?xFx crystals, while Ba1?xRbxFe2As2 crystals were grown using a quartz ampoule method. Single crystals were used for electrical transport, structure, magnetic torque and spectroscopic studies. Investigations of the crystal structure confirmed high structural perfection and show incomplete occupation of the (O, F) position in superconducting LnFeAsO1?xFx crystals. Resistivity measurements on LnFeAsO1?xFx crystals show a significant broadening of the transition in high magnetic fields, whereas the resistive transition in Ba1?xRbxFe2As2 simply shifts to lower temperature. The critical current density for both compounds is relatively high and exceeds 2 × 109 A/m2 at 15 K in 7 T. The anisotropy of magnetic penetration depth, measured on LnFeAsO1?xFx crystals by torque magnetometry is temperature dependent and apparently larger than the anisotropy of the upper critical field. Ba1?xRbxFe2As2 crystals are electronically significantly less anisotropic. Point-Contact Andreev-Reflection spectroscopy indicates the existence of two energy gaps in LnFeAsO1?xFx. Scanning Tunneling Spectroscopy reveals in addition to a superconducting gap, also some feature at high energy (~20 meV).  相似文献   

18.
We report the single crystal growth of Ca(Fe1?x Co x )2As2 (0?≤?x?≤?0.082) from Sn flux. The temperature–composition phase diagram is mapped out based on the magnetic susceptibility and electrical transport measurements. The phase diagram of Ca(Fe1?x Co x )2As2 is qualitatively different from those of Sr and Ba; this could be due to both the charge doping and structural tuning effects associated with Co substitution.  相似文献   

19.
Magnetic measurements were performed on the (GdxY1−x)Co2B2 compounds, in the temperature range 2–800 K and fields up to 70 kOe. YCo2B2 is a paramagnet. The (GdxY1−x)Co2B2 compounds with x≥0.2 shows a ferromagnetic type ordering. The saturation magnetization at 2 K coincides only with the contribution of gadolinium. The Curie temperatures are nearly linearly dependent on the composition. Above the Curie points, the thermal variations of the magnetic susceptibility can be described as a superposition of a temperature independent term ϰ0 on a Curie-Weiss behavior. The Curie constants are determined by the contribution of Gd3+ ions only. The ϰ0 values increase when the gadolinium content is greater. The observed properties are discussed in the wider framework of the magnetic behavior of cobalt in GdCoxBy compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号