首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
With Nd3+ doping and Ca2+, Sr2+ modulating in the sol–gel technique, a series of polycrystalline perovskite samples La0.7?xNdx(Ca,Sr)0.3MnO3 (x = 0, 0.05, 0.1, 0.15, 0.20, 0.25) was prepared, their maximum magnetic entropy changes were tuned to room temperature (ΔSH = ?1.47 J/kg K at 298 k for La0.45Nd0.25(Ca,Sr)0.3MnO3), an enhancement of the maximum magnetic entropy change (ΔSH = ?1.89 J/kg K at 315 k) and its refrigerant capacity (about 45.3 J/kg) had also been obtained under 9 kOe magnetic field variation for La0.55Nd0.15(Ca,Sr)0.3MnO3 contrast to La0.7(Ca,Sr)0.3MnO3.  相似文献   

2.
X-band electron magnetic resonance method was explored for study of sonochemically prepared nano-powders of La-based doped manganites: La0.7Sr0.3MnO3 and La0.9Ca0.1MnO3 at 115  T  600 K temperature interval, including main characteristic points of its magnetic transitions. The data obtained were compared with those for crushed bulk single crystals of the same compositions. It is shown that nano-powder of La0.7Sr0.3MnO3 has the same ferromagnetic ordering as its bulk counterpart, being more homogeneous and less anisotropic. While, nano-powder of La0.9Ca0.1MnO3 shows two distinct ferromagnetic phases in a marked contrast to the bulk sample, where complex magnetic structure comprising canted antiferromagnetic matrix and ferromagnetic clusters is observed. To explain the observed phenomena, the crucial role of nano-scale grain size and its interplay with spin and charge degrees of freedom in considered systems are discussed.  相似文献   

3.
The influence of hydrostatic pressure, magnetic field and temperature on resistivity behaviour of bulk and film samples La0.9Mn1.1O3 and La0.56Ca0.24Mn1.2O3 at action of magnetic field and temperature has been analysed. It is established that the maximum of magnetoresistive and the revealed baroresistive, magnetobaroresistive effects coincide at the same temperature Tpp. This temperature is equal to the “metal-semiconductor” phase transition temperature Tms. “Cooling” and “heating” effects of pressure and magnetic field have been revealed. A mutual correspondence of TPH (6.2 K, 1 kbar, 2.7 kOe) influence on polycrystalline sample La0.9Mn1.1O3 resistivity has been determined. The linear change of Tms(P) and Tms(H) in La0.9Mn1.1O3, La0.56Ca0.24Mn1.2O3 resistivity have been found. An importance of the regularities of elastic-deforming correspondence of THP influence on magnetic, resistivity properties, phase transitions and effects was elucidated and explained. An alternating influence of THP and its role in resistivity has been pointed. A correlation between structural, elastic and resistive properties is specified.  相似文献   

4.
The cathodic performance of selected mixed-conducting electrodes, including perovskite-type SrMn0.6Nb0.4O3 ? δ, Sr0.7Ce0.3Mn0.9Cr0.1O3 ? δ and Gd0.6Ca0.4Mn0.9Ni0.1O3 ? δ, and Ruddlesden–Popper La2Ni0.5Cu0.5O4 + δ, LaSr2Mn1.6Ni0.4O7 ? δ, La4Ni3 ? xCuxO10 ? δ (x = 0–0.1) and La3.95Sr0.05Ni2CoO10 ? δ, was evaluated in contact with apatite-type La10Si5AlO26.5 solid electrolyte at 873–1073 K and atmospheric oxygen pressure. The electrochemical activity of porous nickelate-based layers was found to correlate with the concentration of mobile ionic charge carriers and bulk oxygen transport, thus lowering in the series La4Ni2.9Cu0.1O10 ? δ > La4Ni3O10 ? δ > La3.95Sr0.05Ni2CoO10 ? δ and decreasing on copper doping in K2NiF4-type La2Ni1 ? xCuxO4 ? δ. The relatively high overpotentials of nickelate-based cathodes, varying in the range ? 240 to ? 370 mV at 1073 K and current density of ? 200 mA/cm2, are primarily associated with surface diffusion of silica from La10Si5AlO26.5, which partially blocks the electrochemical reaction zone. As compared to the intergrowth nickelate materials, the manganite-based electrodes exhibit substantially worse electrochemical properties, in correlation with the level of oxygen-ionic and electronic conduction in Mn-containing phases. The effects of cation interdiffusion between the cell components as a performance-deteriorating factor are briefly discussed.  相似文献   

5.
The nanocrystalline Ni0.7Mn0.3Nd0.1Fe1.9O4 ferrites were prepared by the emulsion method. X-ray diffractometer (XRD), transmission electron microscope (TEM), Mössbauer spectra and vibrating samples magnetometer (VSM) were used to study the structure, morphology and magnetic properties. The magnetic properties of Nd3+-doped Ni0.7Mn0.3Fe2O4 nanocrystal ferrites were investigated in detail. The Ni0.7Mn0.3Nd0.1Fe1.9O4 nanocrystal ferrite with particle size of 10.7 nm shows superparamagnetism.  相似文献   

6.
The influence of first and second order magnetic phase transitions on the magnetocaloric effect (MCE) and refrigerant capacity or relative cooling power (RCP) of La0.7Ca0.3MnO3 and La0.7Ca0.3Mn0.95Co0.05O3 materials has been investigated. Large low-field-induced magnetic entropy changes are observed in La0.7Ca0.3MnO3 and La0.7Ca0.3Mn0.95Co0.05O3 materials. The La0.7Ca0.3MnO3 material experiences a large entropy change with a first-order magnetic phase transition at the Curie temperature, TC. On the other hand, La0.7Ca0.3Mn0.95Co0.05O3 displays a smaller entropy change with a second order phase transition. While a first-order magnetic transition material induces a larger MCE (7.528 J/kg K at 5 T) at TC, this is limited to a narrow temperature range, resulting in a relatively small RCP (218 J/kg), while the Co-doped second-order magnetic transition material induces a smaller MCE (7.14 J/kg K for 5 T), but it is spread over a broader temperature range, resulting in a larger RCP (308 J/kg). The maximum magnetoresistance (MR, defined as ρ(0)/ρ(H)-1) under a field of 5 T is about 206% and 333% for La0.7Ca0.3MnO3 and La0.7Ca0.3Mn0.95Co0.05O3, respectively. The refrigeration capacity (RCP) is enhanced in La0.7Ca0.3Mn0.95Co0.05O3 (by about 41%) due to small changes from Co doping. The magnetocaloric features of these materials at lower magnetic fields (MCE=3.163 for La0.7Ca0.3Mn0.95Co0.05O3 and 4.63 J/kg K for La0.7Ca0.3MnO3 at 1 T), and the high RCP and MR can provide some ideas for exploring novel magnetic refrigerants that can operate with permanent magnets rather than superconducting ones as the magnetic field source.  相似文献   

7.
The structural and magnetic ordering in La0.6Ca0.4MnO3 has been studied by neutron powder diffraction as a function of temperature between 15 and 300 K. The para-ferromagnetic transition at T∼250 K is accompanied by significant structural distortions in the form of octahedral Mn–O6 rotations. At 15 K, the total refined ferromagnetic moment on the Mn site was obtained as 3.1 μB, in reasonable agreement with the total expected average moment of mixed Mn3+/Mn4+ matrix.  相似文献   

8.
The magnetic and electronic ground states of the polycrystalline perovskite compound La0.7Sr0.3Co0.9Mn0.1O3 have been studied using AC susceptibility, resistivity and neutron depolarization techniques. Results of neutron depolarization study establish the existence of ferromagnetic domains of ∼3 μm size below 180 K. The substitution of 10 at% Mn ions at the Co site in the compound La0.7Sr0.3CoO3 reduces the effective eg electron transfer and suppresses the double exchange interaction. The competition between the reduced ferromagnetic double exchange interaction and the coexisting antiferromagnetic interaction along with the random nature of substitution leads to a randomly canted ferromagnetic ground state for the substituted compound. Resistivity study confirms that the randomly canted ferromagnetic ground state is insulating.  相似文献   

9.
Three series of samples Ln0.7T0.3MnO3 (I), Ln0.7T0.3Mn0.9Cr0.1O3 (II), and Ln0.7T0.3Mn0.9Fe0.1O3 (III) (Ln=La, (La, Nd), (La, Y), T=Ca, CaSr, Sr) were prepared by sol–gel technique. The effect of the average A-site cation radius 〈rA〉 on the ferromagnetic transition temperature TC has been investigated. TC was obtained from MT curves measured by vibrating sample magnetometer. For a little Nd3+ doped at the A-site, the TC of Ln0.7T0.3MnO3 (I) drops linearly with decreasing 〈rA〉 (1.18 Å<〈rA〉<1.25 Å). Similar behavior has been observed in series II and III, which have lower TC values than series I due to the weakening of the influence of double-exchange interactions upon substituting Fe and Cr for Mn.  相似文献   

10.
This paper is the second part of a two part series, where the effects of varying the A-site dopant on the defect chemistry and transport properties of the materials (La0.6Sr0.4 ? xMx)0.99Co0.2Fe0.8O3 ? δ, M = Sr, Ca (x = 0.05, 0.1), Ba (x = 0.1, 0.2) (LSMFC) have been investigated. In part I, the findings on the defect chemistry were reported, while the oxygen transport properties are reported here in part II. In the investigated material series, the amount of divalent dopant has been kept constant, while Sr ions have been substituted with Ca ions (smaller ionic radius) or Ba ions (larger ionic radius). The size difference induces different strains into the crystal structure in each composition. The possibility of simple relationships between various crystal strain parameters and the transport properties were analyzed. Oxygen pump controlled permeation experiments and a surface sensitive electrolyte probe were used to extract the permeability and surface resistance, rs. The highest permeability was found for (La0.6Sr0.3Ca0.1)0.99Co0.2Fe0.8O3 ? δ. The apparent activation energy of the permeability was 78 kJ/mol. The inverse surface resistance, rs? 1, also had an activated behavior with an activation energy close to 180 kJ/mol for most of the materials. A reversible transition to an abnormally low rs was found in (La0.6Sr0.3Ca0.1)0.99Co0.2Fe0.8O3 ? δ at T > 1223 K.  相似文献   

11.
《Solid State Ionics》2006,177(19-25):2005-2008
Electronic conductivity in the potential SOFC anode material La1−xSrxCr0.5Mn0.5Oδ has been investigated in the range 0.2 < x < 0.3. log(σT) vs. 1/T plots indicate conduction via thermally activated polaron hopping. At 900 °C, conductivity in air increases with Sr2+ via an increase in [BB] holes (B—transition metal). X-ray absorption spectroscopy (XAS) studies indicate that compensation for A-site Sr substitution and oxygen vacancy formation is via the Mn cation only; Cr maintains a 3+ oxidation state and 6-fold oxygen coordination. Electronic transport occurs by percolation between Mn cations in a disordered B-site sub-lattice. Conductivity decreases with p(O2), which is indicative of p-type conduction behaviour, but the relationship cannot be explained by a simple redox equilibrium involving Mn3+, Mn4+ and oxygen, possibly due to co-existence of Mn2+, Mn3+ and Mn4+ via disproportionation as with La1−xSrxMnOδ.  相似文献   

12.
Magnetization measurements of a La1/3Nd1/3Ca1/3MnO3 perovskite at magnetic field up to 6 T have revealed an anomalous behaviour – above 130 K the material exhibits a loop displacement about a field of 2 T. We assume that this is the result of an exchange interaction between ferromagnetic and antiferromagnetic phases in a magnetically inhomogeneous compound. At about 115 K a transition from a semiconducting to a metallic-like state has been observed.  相似文献   

13.
《Solid State Ionics》2006,177(19-25):1753-1756
La1−xSrxMeO3 (Me = Mn, Co, Fe) perovskites are used as cathodes and are also attractive materials for application as the contact layer between cathode and interconnect in solid oxide fuel cells. In this contribution, three perovskite series, La0.8Sr0.2Mn1−xCoxO3-δ (series 1), La0.8Sr0.2Fe1−xCoxO3-δ (series 2) and La0.8Sr0.2Mn1−x/2Fe(1−x)/2CoxO3-δ (series 3) with x = 0, 0.25, 0.5, 0.75 and 1 were re-investigated under identical synthesis and measurement conditions with the aim of obtaining a full overview of the quasi-ternary system La0.8Sr0.2MnO3-δ–La0.8Sr0.2FeO3-δ–La0.8Sr0.2CoO3-δ. The distribution of the different crystallographic phases in the selected series, the DC electrical conductivity and the thermal expansion coefficients are presented.  相似文献   

14.
The effect of Ni2+ doping on the magnetic and magnetocaloric properties of La0.7Ca0.3MnO3 manganites synthesized via the auto-combustion method is reported. The aim of studying Ni2+-substituted La0.7Ca0.3Mn1 ? xNixO3 (x=0,0.02,0.07, and 0.1) manganites was to explore the possibility of increasing the operating temperature range for the magnetocaloric effect through tuning of the magnetic transition temperature. X-ray diffraction analysis confirmed the phase purity of the synthesized samples. The substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice was also corroborated through this technique. The dependence of the magnetization on the temperature reveals that all the compositions exhibit a well-defined ferromagnetic to paramagnetic transition near the Curie temperature. A systematic decrease in the values of the Curie temperature is clearly observed upon Ni2+ doping. Probably the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+–O–Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and the magnetic moment in the samples. By using Arrott plots, it was found that the phase transition from ferromagnetic to paramagnetic is second order. The maximum magnetic entropy changes observed for the x=0,0.02,0.07, and 0.1 composites was 0.85, 0.77, 0.63, and 0.59 J/kg?K, respectively, under a magnetic field of 1.5 T. In general, it was verified that the magnetic entropy change achieved for La0.7Ca0.3Mn1 ? xNixO3 manganites synthesized via the auto-combustion method is higher than those reported for other manganites with comparable Ni2+-doping levels synthesized via standard solid state reaction. The addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (~60 J/kg) is found for a Ni-doping level of 2% around 230 K in a field of 1.5 T.  相似文献   

15.
《Solid State Ionics》2006,177(19-25):1843-1848
The electrochemical performance of La0.58Sr0.4Co0.2Fe0.8O3−δ (L58SCF), La0.9Sr1.1FeO4−δ (LS2F) and LSM (La0.65Sr0.3MnO3−δ)/LSM–YSZ (50 wt.% LSM–50 wt.% ZrO2 (8 mol% Y2O3)) cathode electrodes interfaced to a double layer Ce0.8Gd0.2O2−δ (CGO)/YSZ electrolyte was studied in the temperature range of 600 to 850 °C and under flow of 21% O2/He mixture, using impedance spectroscopy and current density–overpotential measurements. The L58SCF cathode exhibited the highest electrocatalytic activity for oxygen reduction, according to the order: LS2F/CGO/YSZ  LSM/LSM–YSZ/CGO/YSZ < L58SCF/CGO/YSZ.  相似文献   

16.
Doped lanthanum manganese chromite based perovskite, La0.7A0.3Cr0.5Mn0.5O3 ? δ (LACM, A = Ca, Sr, Ba), on yttria-stabilized zirconia (YSZ) electrolyte is investigated as potential electrode materials for solid oxide fuel cells (SOFCs). The electrical conductivity and electrochemical activity of LACM depend on the A-site dopant. The best electrochemical activity is obtained on the La0.7Ca0.3Cr0.5Mn0.5O3 ? δ/YSZ (LCCM/YSZ) composite electrodes. The conductivity of LCCM is 29.9 S cm? 1 at 800 °C in air, and the electrode polarization resistance (RE) of the LCCM/YSZ composite cathode for the O2 reduction reaction is 0.5 Ω cm2 at 900 °C. The effect of Gd-doped ceria (GDC) impregnation on the LCCM cathode polarization resistances is also studied. GDC impregnation significantly enhances the electrochemical activity of the LCCM cathode. In the case of the 6.02 mg cm? 2 GDC-impregnated LCCM cathode, RE is 0.4 Ω cm2 at 800 °C, ~ 60 times smaller than 24.4 Ω cm2 measured on a LCCM cathode without the GDC impregnation. Finally the electrochemical activities of the doped lanthanum manganese chromites for the H2 oxidation reaction are also investigated.  相似文献   

17.
《Solid State Ionics》2006,177(5-6):457-470
Atomistic modelling showed that a key factor affecting the p(O2) dependencies of point defect chemical potentials in perovskite-type La0.3Sr0.7Fe1−xMxO3−δ (M = Ga, Al; x = 0–0.4) under oxidizing conditions, relates to the coulombic repulsion between oxygen vacancies and/or electron holes. The configurations of A- and B-site cations with stable oxidation states have no essential influence on energetics of the mobile charge carriers, whereas the electrons formed due to iron disproportionation are expected to form defect pair clusters with oxygen vacancies. These results were used to develop thermodynamic models, adequately describing the p(O2)-T-δ diagrams of La0.3Sr0.7Fe(M′)O3−δ determined by the coulometric titration technique at 923–1223 K in the oxygen partial pressure range from 1 × 10 5 to 0.5 atm. The thermodynamic functions governing the oxygen intercalation process were found independent of the defect concentration. Doping with aluminum and gallium leads to increasing oxygen deficiency and induces substantial changes in the behavior of iron cations, increasing the tendencies to disproportionation and hole localization. Despite similar oxygen nonstoichiometry in the Al- and Ga-substituted ferrites at a given dopant content, the latter tendency is more pronounced in the case of aluminum-containing perovskites.  相似文献   

18.
Ferrimagnetism has been extensively studied in garnets, whereas it is rare to find the antiferromagnet. Present work will demonstrate antiferromagnetism in the two Mn–V-garnets. Antiferromagnetic phase transition in AgCa2Mn2V3O12 and NaPb2Mn2V3O12 has been found, where the magnetic Mn2+ ions locate only on octahedral A site. The heat capacity shows sharp peak due to antiferromagnetic order with the Néel temperature TN=23.8 K for AgCa2Mn2V3O12 and TN=14.2 K for NaPb2Mn2V3O12. The magnetic entropy change over a temperature range 0–50 K is 13.9 J K?1 mol-Mn2+-ions?1 for AgCa2Mn2V3O12 and 13.6 J K?1 mol-Mn2+-ions?1 for NaPb2Mn2V3O12, which are in good agreement with calculated value of Mn2+ ion with spin S=5/2. The magnetic susceptibility shows the Curie–Weiss behavior over the range 29–350 K. The effective magnetic moment μeff and the Weiss constant θ are μeff=6.20 μB Mn2+-ion?1 and θ=?34.1 K (antiferromagnetic sign) for AgCa2Mn2V3O12 and μeff=6.02 μB Mn2+-ion?1 and θ=?20.8 K for NaPb2Mn2V3O12.  相似文献   

19.
Series of polycrystalline manganese perovskite oxides La0.7−xNdxPb0.3MnO3 (x=0, 0.05, and 0.1) are prepared by the sol-gel technique, La0.65Nd0.05Pb0.3MnO3 were representatively investigated because the peculiar double resistivity peaks were found; the maximum magnetic entropy change ΔSH=−2.03 J/kg K and its good refrigerant capacity 71.05 J/kg around room temperature were obtained under 9 kOe magnetic field variation. The expected double peaks of magnetocaloric effect had not occurred since magnetic entropy change originated from the differential coefficient of magnetic moment to temperature; the relatively well refrigerant capacity possibly results from the faint magnetic inhomogeneity mixed in the double exchange strong magnetic signal.  相似文献   

20.
《Solid State Communications》2002,121(2-3):133-137
La1−xMnOδ (x=−0.02 to 0.35) nanocrystalline powders were prepared by a new sol–gel method. It is used the acrylamide gelification to form an organic 3D tangled network where a solution of the respective cations is soaked. This method was adapted to cover a broad range of high impact electro–ceramic oxides, which a particular example is the CMR nanopowders reported in this work. The acrylamide sol–gel process is a fast, cheaper and easy to scale-up method for obtaining fine powders of complex oxides. This synthesis method allows performing 100 g of highly pure nanopowders in one run with simple laboratory scale. The sponge like powder obtained consists of thin sheets composed of nanocrystallites whose size varies from 66 nm to 30 nm, depending on composition. The oxygen content of the manganite powder is shown to decrease with vacancy-doping on lanthanum site. Such a evolution can be explained for La/Mn<0.9 by considering a demixtion of the powder into La0.9MnO3 and Mn3O4 phases, while for La/Mn>0.9, the high oxygen excess leads to consider vacancies on both lanthanum and manganese sites. Both hypotheses are supported by magnetic measurements, which show a constant Curie temperature of 295 K for La/Mn<0.9, while for La/Mn>0.9, the occurrence of vacancies on manganese sites progressively impedes the ferromagnetic interactions, leading to a cluster–glass behaviour in the case of the highly manganese-deficient La0.94Mn0.92O3 compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号