首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ru3(CO)12/1,10-phenanthroline-catalyzed hydroformylation of styrene under 100 atm of syngas (CO:H2=1:1) at 120°C in DMF gives the corresponding branched and linear aldehydes in 58 and 22% yields, respectively. With the use of quinuclidine as a ligand in place of 1,10-phenanthroline in N,N-dimethylacetamide, the corresponding branched and linear oxo-alcohols were obtained in 53 and 28% yields, respectively. Hydroformylation of methyl acrylate by a catalyst system of Ru3(CO)12/1,10-phenanthroline to afford 4-methoxy-4-methyl-δ-valerolactone 1 in 31% yield, while the catalyst system of Ru3(CO)12/PPh3 yields the open-chain aldehyde, dimethyl 2-formyl-2-methylglutarate (3), which is the precursor of lactone 1 in 18% yield.  相似文献   

2.
A series of ruthenium-based olefin metathesis catalysts coordinated with unsymmetrical N-heterocyclic carbene (NHC) ligands has been prepared and fully characterized. These complexes are readily accessible in one or two steps from commercially available [(PCy(3))(2)Cl(2)Ru==CHPh]. All of the complexes reported herein promote the ring-closing of diethyldiallyl and diethylallylmethallyl malonate, the ring-opening metathesis polymerization of 1,5-cyclooctadiene, and the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene, in some cases surpassing in efficiency the existing second-generation catalysts. Especially in the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene, all new catalysts demonstrate similar or higher activity than the second-generation ruthenium catalysts and, most importantly, afford improved E/Z ratios of the desired cross-product at conversion above 60 %. The influence of the unsymmetrical NHC ligands on the initiation rate and the activation parameters for the irreversible reaction of these ruthenium complexes with butyl vinyl ether were also studied. Finally, the synthesis of the related chlorodicarbonyl(carbene) rhodium(I) complexes allowed for the study of the electronic properties of the new unsymmetrical NHC ligands that are discussed in detail.  相似文献   

3.
Reaction of the ligand-bridged derivatives [M3(CO)10{μ-(RO)2PN(Et)P(OR)2}] and [M3(CO)8{μ-(RO)2PN(Et)P(OR)2}2] (M = Ru or Os; R = Me or Pri) with halogens leads to the formation of cationic products [M3(μ-X)(CO)10{μ- (RO)2PN(Et)P(OR)2}]+ and [M3(μ-X)(CO)8{μ-(RO)2PN(Et)P(OR)2}2]+ (X = Cl, Br or I) in which the halogen bridges an opened edge of the metal atom framework; the crystal structure of [Ru3(μ-I)(CO)8{μ-(MeO)2PN(Et)P(OMe)2}2]PF6 is reported.  相似文献   

4.
Two binuclear oxo-bridged half-titanocene complexes, µ-oxo-bis[(1-aryl-2,3,4,5-tetramethylcyclopentadienyl)dichlorotitanium] [(ArMe4CpTiCl2)2O, Ar?=?4- i PrC6H4 (3), 4- t BuC6H4 (4)], have been prepared by the treatment of 1-aryl-2,3,4,5-tetramethylcyclopentadienyltitanium trichloride [ArMe4CpTiCl3, Ar?=?4- i PrC6H4 (1), 4- t BuC6H4 (2)] with 0.5?equiv of H2O. Complexes 3 and 4 have been characterized by elemental analysis and 1H- and 13C-NMR (nuclear magnetic resonance; NMR) spectroscopies, and their molecular structures have been determined by X-ray crystallography. When activated with i Bu3Al and Ph3CB(C6F5)4, complexes 3 and 4 both exhibit reasonable catalytic activity for ethylene polymerization (90?×?103 to 280?×?103?kg PE (mol?Ti)?1?bar?1?h?1), producing polyethylenes with moderate molecular weight.  相似文献   

5.
Wong YL  Ng DK  Lee HK 《Inorganic chemistry》2002,41(20):5276-5285
A new series of cis-dioxomolybdenum(VI) complexes MoO(2)(L(n))Cl (n = 1-5) were prepared by the reaction of MoO(2)Cl(2)(DME) (DME = 1,2-dimethoxyethane) with 2-N-(2-pyridylmethyl)aminophenol (HL(1)) or its N-alkyl derivatives (HL(n)) (n = 2-5) in the presence of triethylamine. The new mu-oxo dimolybdenum compounds [MoO(2)(L(n))](2)O (n = 1, 4, 5, 7) were also prepared by treating the corresponding ligand HL(n) with MoO(2)(acac)(2) (acac = acetylacetonate) in warm methanolic solutions or (NH(4))(6)[Mo(7)O(24)].4H(2)O in the presence of dilute HCl. Treatment of MoO(2)(L(1))Cl or [MoO(2)(L(1))](2)O with the Grignard reagent Me(3)SiCH(2)MgCl gave the alkyl compound MoO(2)(L(1))(CH(2)SiMe(3)), which represents the first example of dioxomolybdenum(VI) alkyl complex supported by a N(2)O-type ancillary ligand. The analogous chloro and mu-oxo tungsten derivatives WO(2)(L(n))Cl (n = 6, 7) and [WO(2)(L(n))](2)O (n = 1, 4, 6, 7) were prepared by the reaction of WO(2)Cl(2)(DME) with HL(n) in the presence of triethylamine. Similar to their molybdenum analogues, the tungsten alkyl complexes WO(2)(L(n))(R) (n = 6, 7; R = Me, Et, CH(2)SiMe(3), C(6)H(4)(t)Bu-4) were synthesized by treating WO(2)(L(n))Cl or [WO(2)(L(n))](2)O (n = 6, 7) with the appropriate Grignard reagents. The catalytic properties of selected dioxo-Mo(VI) and -W(VI) chloro and mu-oxo complexes toward epoxidation of styrene by tert-butyl hydroperoxide (TBHP) were also investigated.  相似文献   

6.
The cage phosphines 1,3,5,7-tetramethyl-6-phenyl-2,4,8-trioxa-6-phosphaadamantane (1a) and 1,3,5,7-tetraethyl-6-phenyl-2,4,8,trioxa-6-phosphaadamantane (1b) have been made by the acid catalysed addition of PhPH(2) to the appropriate beta-diketones; the acid used (HCl, H(3)PO(4) or H(2)SO(4)) and its concentration affect the rate and selectivity of these condensation reactions. Phosphines 1a and 1b react with [PdCl(2)(NCPh)(2)] to form complexes trans-[PdCl(2)(1a)(2)](2a) and trans-[PdCl(2)(1b)(2)](2b) as mixtures of rac and meso diastereoisomers. The platinum(II) chemistry is more complicated and when 1a or 1b is added to [PtCl(2)(cod)], equilibrium mixtures of trans-[PtCl(2)L(2)] and [Pt(2)Cl(4)L(2)](L = or ) are formed in CH(2)Cl(2) solution. Meso/rac mixtures of trans-[MCl(CO)(1a)(2)] M = Ir (6a) or Rh (7a) are formed upon treatment of MCl(3).nH(2)O with an excess of 1a and the anionic cobalt complex [NHEt(3)][CoCl(3)(1a)](9) was isolated from the product formed by CoCl(2).6H(2)O and 1a. The nu(CO) values from the IR spectra of 6a and 7a suggest that 1a resembles a phosphonite in its bonding to Rh and Ir. Crystal structures of meso-2a, meso-2b, rac-6a and 9 are reported and in each case a small intracage C-P-C angle of ca. 94 degrees is observed; this may partly explain the bonding characteristics of ligands 1a and 1b. The cone angles for 1a and 1b are similar and large (ca. 200 degrees). Rhodium complexes of ligands 1a and 1b are hydroformylation catalysts with similarly high activity to catalysts derived from phosphites. The catalysts derived from 1a and 1b gave unusually low linear selectivity in the hydroformylation of hexenes. This feature has been further exploited in quaternary-selective hydroformylations of unsaturated esters; catalysts derived from 1a give better yields and regioselectivities than any previously reported catalyst.  相似文献   

7.
8.
9.
New azadioxaphosphabicyclo[3.3.0]octane ligands showing a trans arrangement with regard to the two five-membered heterocycles, were obtained as a mixture of three conformers, in agreement with molecular modelling studies. The stability of oxaphosphane ligands was studied under basic catalytic conditions, monitored by NMR spectroscopy. Palladium catalytic systems containing these ligands were active in Suzuki C-C cross-coupling reactions between phenylboronic acid and aryl halides (bromide and chloride derivatives) bearing electron-donor or electron-withdrawing substituents, in both organic and ionic liquid solvents. The catalytic systems showed a high stability even under the most severe reaction conditions used in this work. The ionic liquid catalytic phase could be recycled up to ten times without significant activity loss.  相似文献   

10.
[Ru(CO)4PMe3] reacts with MeI to give fac-[Ru(CO)3(PMe3)(Me)I]. The latter reacts with PMe3 to give a mixture of the three isomers of cis-bis(trimethylphosphine)-cis-dicarbonyl acetyl iodide [Ru(CO)2(PMe3)2(COMe)I]. Decarbonylation of the mixture gives only the trans-bis(trimethylphosphine)-cis-dicarbonyl methyl iodide complex [Ru(CO)2(PMe3)2MeI], which was also prepared by oxidative addition of MeI to [Ru(CO)3(PMe3)2].  相似文献   

11.
Three-Centre Oxidative Addition of Phosphorus Ylides to Ru3(CO)12 Phosphorus ylides undergo oxidative addition to Ru3(CO)12 to yield a wide range of Ru3 clusters with triply bridging organic ligands derived from the ylides. Ph3PCH2 forms HRu3(CO)931-Ph3P — CH — CO) ( 1 ) containing a phosphonio enolate. Ph3PCH — CHO yields a product mixture containing the phosphonio enolate-bridged cluster and its PPh3 derivative 6 , the phosphoniomethylidyne-bridged compound H2Ru3(CO)931-C — PPh3) ( 5 ), and the ketenylidene-bridged compound H2Ru3(CO)8(PPh3)(μ31-C — CO) ( 7 ). Thermal treatment converts the phosphonio enolate ligand (in 1 ) into the phosphoniomethylidyne ligand (in 5 ), and the latter into the ketenylidene ligand (in 7 ). With Ph3PCH — C(O)Me and Ru3(CO)12 ortho1-metalated Ru3 derivatives 10, 11 of the phosphonio ketone R3P — C — C(O)Me are produced, and likewise with Ph3PCH — COOEt the ortho1-metalated derivative 12 of the phosphonio ester R3P — C — CO2Et. Me3PCH — COOtBu is oxidatively added to form HRu3(CO)931-Me3P — C — COOtBu) ( 13 ) bearing a phosphonio ester ligand. — The crystal structures of 6 and 13 are reported. The sequence of Ru3 clusters and the bonding modes of the μ3 ligands can be related to the surface reactions during Fischer-Tropsch catalysis.  相似文献   

12.
13.
The reaction of Ru3(CO)12 with MeO2C(H)C=C=C(H)CO2 Me has yielded two isomeric productsanti-Ru2(CO)6[μ-η 3-η 1-MeO2C(H)CCC(H)CO2Me],1 in 70% yield andsyn-Ru2(CO)6[μ-η 3-η 1-MeO2C(H)CCC(H)CO2Me],2 in 5% yield. Both compounds were characterized by single crystal X-ray diffraction analysis. Both products are diruthenium complexes with bridging di(carboxylate)allene ligands in which the oxygen atom of the carbonyl group of one of the carboxylate groupings is coordinated to one of the metal atoms. Compound1 isomerizes partially to2 at 68°C. Crystal Data for1: space group=P21/n,a=11.131(1) Å,b=10.228(2) Å,c=15.978(2) Å,β=102.01(1)°,Z=4, 1653 reflections,R=0.025; for2: space group=P $\bar 1$ ,a=9.340(1) Å,b=14.925(4) Å,c=6.778(2) Å,α=99-02(2)°,β=104 62(2)°,γ=94.58(2)°,Z=2, 1857 reflections,R=0.027.  相似文献   

14.
15.
Isomers of Os3(CO)10(diphosphine) (diphosphine = Ph2P(CH2)nPPh2; n = 2 (dppe), n = 3 (dppp), and n = 4 (dppb)) have been prepared in which the diphosphine is chelating (1,1-isomer) or bridging (1,2-isomer), respectively, by displacing butadiene or acetonitrile from the complexes Os3(CO)10(cis- or trans-C4H6) or Os3(CO)10(MeCN)2. Ph2PCH2PPh2 (dppm) gives only the known bridging (1,2-isomer) whichever starting material is used. Structures have been established by infrared, 31P and 13C NMR methods.  相似文献   

16.
We have recently reported a novel rearrangement reaction involving an intramolecular metathesis between M-M and Fe-Fe bonds in the dinuclear iron complexes (Me2MMMe2)[η5-C5R4)Fe(CO)]2(μ-CO)2 (M=Si, Ge; R=H, Me):[1-5].In order to extend the applied range of the rearrangement reaction we tried to synthesize the digermyl briged diruthenium analogues. The results showed a great difference between them.  相似文献   

17.
New tetraphosphorus ligands have been developed and applied in the rhodium-catalyzed regioselective hydroformylation of a variety of functionalized allyl and vinyl derivatives. Remarkably high linear selectivity was obtained by these tetraphosphorus ligands. The ligand that bears strong electron-withdrawing 2,4-difluorophenyl groups is the most effective one in affording linear aldehydes. The Rh/tetraphosphorus ligand catalyst is highly effective to produce linear aldehydes from functionalized allyl derivatives with heteroatoms or aromatic groups directly adjacent to the allyl group. For vinyl derivatives, the ligand is highly linear selective for acrylic derivatives, styrene, vinyl pyridine, and vinyl phthalimide. Linear to branch ratios of 26:1 and 10:1 were obtained for the hydroformylation of styrene and allyl cyanide, respectively.  相似文献   

18.
Dioxomolybdenum(VI) complexes of general formula [MoO2X2L2] (X = Cl, OSiPh3; L2 = 2-(1-butyl-3-pyrazolyl)pyridine, ethyl[3-(2-pyridyl)-1-pyrazolyl]acetate) were prepared and characterised by 1H NMR, IR and Raman spectroscopy. The assignment of the vibrational spectra was supported by ab initio calculations. A single crystal X-ray diffraction study of the complex [MoO2Cl2{ethyl[3-(2-pyridyl)-1-pyrazolyl]acetate}] showed that the compound is monomeric and crystallises in the tetragonal system with space group P41. The four complexes are active and selective catalysts for the liquid-phase epoxidation of olefins by tert-butylhydroperoxide. Selectivities to the corresponding epoxides were mostly 100% (for conversions of at least 34%) for the substrates cyclooctene, cyclododecene, 1-octene, trans-2-octene and (R)-(+)-limonene. For styrene epoxidation, the corresponding diol was also formed in significant quantities. The turnover frequencies for cyclooctene epoxidation at 55 °C were around 340 mol molMo−1 h−1 for the chloro complexes and 160 mol molMo−1 h−1 for the triphenylsiloxy complexes. The addition of co-solvents (1,2-dichloroethane or n-hexane) had a detrimental effect on catalytic activities. Kinetic studies for the two complexes bearing the ligand ethyl[3-(2-pyridyl)-1-pyrazolyl]acetate revealed an apparent first order dependence of the initial rate of cyclooctene conversion with respect to cyclooctene or oxidant concentration.  相似文献   

19.
Ruthenium(II) complexes of the type, RuCl2(NO)(PPh3)(L2) (where L = amide ligand) have been synthesized and characterized on the basis of their elemental analysis IR, 1H-, 13C-, 31P-NMR spectra. Amide ligand behaved as a bidentate ligand. The probable structures of these complexes have been discussed. They were used as catalysts for the hydrolysis of drugs viz. rivastigmine tartrate and neostigmine bromide. The percent yields of hydrolyzed products of these drugs were determined spectrophotometrically.  相似文献   

20.
Ru3(CO)12 acts as a homogeneous catalyst precursor for the transformation of αω-diols to polyesters and lactones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号