首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulose acetate (CA) membranes blended with Polyethylene glycol (PEG) in acetone–water solvent system were synthesized by using solution-casting method that resulted in the formation of flexible, white membranes. Different molecular weight (MW) grades of PEG (including MW 1000, 10,000 and 20,000?g/mol) were used. Cast membranes were tested for tensile strength and permeability at different loading of PEG MW 10,000 and 20,000?g/mol. Excellent flexible membranes were produced in acetone–water solvent system in the presence of PEG, which were otherwise brittle. Surface structure and morphology were analysed using scanning electron microscopy. The presence of different functional groups was confirmed using Fourier transform infra-red spectroscopy and the mechanical characteristics were studied by tensile testing. The introduction of PEG caused an increase in permeability of the membranes. The increase in permeability is due to the opening up of pores as the membrane becomes more flexible, when the plasticizer is added. The permeability continues to increase with the addition of PEG. Moreover, the resulting membranes are not only more flexible, but also have largely improved tensile strength as compared to the CA membranes without PEG. This improved tensile strength can also be attributed to the improved flexibility of the membrane. A trade-off is reached between tensile strength and permeability as increasing amount of PEG improves tensile strength but the resulting membrane becomes too permeable to be used for gas separation. Moreover, using PEG of higher MW resulted in porous membranes, even at low amounts of PEG. Therefore, we concluded that CA membrane with less amount of low-MW PEG (i.e. 5% PEG of MW 1000?g/mol) must be used to optimize both permeability and tensile strength of the membrane.  相似文献   

2.
An asymmetric mixed-conducting membrane consists of a thin dense layer and a porous support, and its application has drawn considerable attention, because it is expected to have a more promising potential in the practical application compared with the symmetric membrane. However, with the introduction of support in the asymmetric membrane, two possible permeation modes are produced. One mode is that oxygen permeates from the support to the thin dense layer (designated as SD mode). The other is in the direction from the thin dense layer to the support (designated as DS mode). Thus, from the viewpoint of choosing an appropriate oxygen permeation mode to make better use of the membrane, it is necessary to study the oxygen flux in these two modes. In this paper, their effects on the oxygen flux of asymmetric membranes were investigated from the experiment and the model. The modeling results showed a good agreement with the experimental data. Our study demonstrates that when the asymmetric membrane adopts the SD mode, it is beneficial for the membrane to obtain higher oxygen permeation flux.  相似文献   

3.
We describe the differential permeation method for the study of the diffusion of solvents from a liquid (or liquid mixture) through flat or tubular membranes. This method consists of measuring the transient permeation rates through the membrane when one of its faces is suddenly put into contact with the liquid medium. The change in the transient rate with time is analyzed by numerical best fitting methods to determine the Fickian diffusion coefficient. A simplified equation is proposed for the fitting of the response of a tubular membrane. Deviations from the Fickian transport mechanism with concentration-independent diffusion coefficient can be evidenced and eventually analyzed by using other mechanistic models.  相似文献   

4.
A simple self-crosslinking strategy, without the needs of a separate crosslinker or a catalyst, is reported here. The crosslinking drastically lowers the water swelling ratio (e.g., 5-10 folds reduction) and provides excellent solvent-resistance. The self-crosslinked membrane (DCL: 5.3%) shows the highest IEC-normalized hydroxide conductivity among all crosslinked HEMs reported.  相似文献   

5.
We present a modeling technique that combines a statistical-mechanical coarse-graining scheme with a nonequilibrium molecular simulation algorithm to provide an efficient simulation of steady-state permeation across a microporous material. The coarse-graining scheme is based on the mapping of an atomistic model to a lattice using multidimensional free-energy and transition-state calculations. The nonequilibrium simulation algorithm is a stochastic, lattice version of the recently developed atomistic dual-control-volume grand canonical molecular dynamics. We demonstrate the approach on a model of methane permeating through a bulk portion of siliceous zeolite ZK4 at 300 K under imposed fugacity differences. We predict the coarse-grained (cage-level) density profiles and observe the development of nonlinearities as the magnitude of the fugacity difference is increased. From the net flux of methane we also predict a mean permeability coefficient under the various conditions. The simulation results are obtained over time scales on the order of microseconds and length scales on the order of dozens of nanometers.  相似文献   

6.
Interfacial polymerization (IP) is a powerful technique for fabrication of thin film composite (TFC) membranes. The polymers used most often as support are polysulfone (PS) or polyethersulfone (PES). These supports have limited stability in organic solvents. In this work, microporous polypropylene (PP) flat film and hollow fiber membranes were used as a support to fabricate TFC membranes for nanofiltration by the IP technique. Porous polypropylene membranes can provide substantial chemical, pH, and solvent resistance and are therefore suitable as supports for fabricating TFC membranes functioning as solvent-stable nanofiltration membranes. The surface and the pore interior of polypropylene flat sheet and hollow fiber membranes were hydrophilized first by pre-wetting with acetone followed by oxidation with chromic acid solution. A standard procedure to successfully coat the hydrophilized flat film and hollow fiber membranes was developed next. The monomeric system chosen for IP was poly(ethyleneimine) and isophthaloyl dichloride. The TFC hollow fiber membranes were characterized by nanofiltration of safranin O (MW 351) and brilliant blue R (MW 826) dyes in methanol. Rejection values of 88% and 43% were achieved for brilliant blue R and safranin O, respectively at a transmembrane pressure of 413 kPa in the TFC hollow fiber membranes. Pressure dependences of the solvent flux and solute rejection of the TFC membranes were studied using the modified flat sheet membranes up to a pressure of 965–1241 kPa. Solvent flux increased linearly with an increase in the transmembrane pressure. Solute rejection also increased with an increase in the transmembrane pressure. All modified membranes were also characterized using scanning electron microscopy. Extended-term solvent stability of the fabricated membranes was studied in toluene; the membranes demonstrated substantial solvent stability in toluene.  相似文献   

7.
This study aims to better understand the permeation properties of polydimethylsiloxane (PDMS) membranes. The compressibility and nanofiltration fluxes were measured for swollen PDMS films using several solvents at applied pressures ranging from 5 to 50 bar. The degree of swelling varied according to the solvent and the pressure applied. To show the correlation between the behaviour of the swollen PDMS under pressure and its permeation performance, the thickness reduction of the membrane was mimicked using uniaxial compression tests. The evolution of the nanofiltration flux as a function of the transmembrane pressure proved to be non-linear. Linearization was achieved by taking into account both the swelling and the thickness reduction previously measured, confirming that these phenomena may have occurred during the nanofiltration experiments. Moreover, the solvents' viscosity and affinity for the polymer were confirmed to have a great influence on their ability to permeate the membrane. Finally, employing the most commonly used models, a study of transport through the membrane led to the conclusion that the experimental results were in agreement with the hydraulic theory of transport.  相似文献   

8.
Organic solvent nanofiltration (OSN) is a molecular separation method which offers a sustainable and reliable solution compared to the conventional energy-intensive separation processes. OSN can be successfully applied to several applications, such as food, pharmaceutical, petrochemical and fine-chemical industries. Current research on OSN membranes mainly focuses on polymeric materials due to the ease of processing, controlled formation of pores, lower fabrication costs and higher flexibility as compared with inorganic materials. However, there are some limitations for the polymeric membranes which can be partially surmounted by adding nanoscale fillers into the polymeric matrix to make nanocomposite membranes. This review aims to comprehensively evaluate and report the advances in nanocomposite membranes prepared by using either different nanoscale fillers or various fabrication methods for OSN applications. Nanoparticles that will be discussed include metal-organic framework, graphene oxide, carbon nanotubes, silica, titanium, gold, zeolite and other fillers. The incorporation of these nanoscale fillers into the polymeric membranes can positively influence the mechanical strength, chemical and thermal stability, hydrophilicity, solute selectivity and solvent permeance. This study may provide helpful insights to develop next-generation of OSN membranes for years to come.  相似文献   

9.
10.
Ionophores based on non-cyclic triamides exhibiting Li+ selectivity in solvent polymeric membranes are described. Their lipophilicity (water/1-n-octanol partition coefficient) is up to 1013.8 so that they can be used in ion-selective electrodes with a lifetime of up to 40 000 h even in permanent contact with whole blood or undiluted blood serum.On leave from the Department of General Chemistry, Technical University of Gdansk, PL-80-952 Gdansk, Poland  相似文献   

11.
Petrov BI  Zhivopistsev VP 《Talanta》1987,34(1):175-178
The liquid-liquid extraction method for inorganic compounds has been developed and further improved by using different types of multiphase systems involving pyrazolone derivatives. The degree of concentration of elements by use of three-phase liquid systems has been increased by 1-2 orders of magnitude, and a universal method for preconcentration of elements in non-aqueous media has been suggested. The development of extraction systems based on a single liquid component-water-and not requiring an organic solvent at all, has increased the safety of extraction methods and improved the working conditions. A new variant of spectrochemical analysis without mineralization of an extract has been developed. Its main advantage is that it reduces the analysis time by a factor of 6 or 8. The liquid-liquid extraction of elements in purely aqueous two-phase systems without an organic solvent can be combined with titrimetric, photometric and polarographic determination in hybrid analytical procedures.  相似文献   

12.
13.
This study is aimed at evaluating the applicability of the Jouyban–Acree model for predicting the solubility of polycyclic aromatic hydrocarbons (PAHs) in binary and ternary solvent mixtures at different temperatures by employing a large solubility data set. The solubility is predicted in solvent mixtures at different temperatures within an acceptable error range based on the experimental solubility data of PAHs in mono-solvents. The results reveal that the Jouyban–Acree model could be recommended for practical applications in chemical industries.  相似文献   

14.
Analysis of previous experimental results, referring to water permeation in cellulose acetate membranes, is presented by using the frictional model proposed by Kedem and Katchalsky. The frictional coefficients decrease with temperature. The conclusions about the transport mechanisms responsible for the flow resemble those obtained in our previous papers. The activation energies for permeation have been calculated; they are of the same order of magnitude as those reported by other authors. The relation between frictional coefficients and activation energies is considered.  相似文献   

15.
New types of supported Pd membranes were developed for high temperature H2 separation. Sequential combinations of boehmite sol slip casting and film coating, and electroless plating (ELP) steps were designed to synthesize “Pd encapsulated” and “Pd nanopore” membranes supported on -Al2O3 hollow fibers. The permeation characteristics (flux, permselectivity) of a series of unaged and aged encapsulated and nanopore membranes with different Pd loadings were compared to those of a conventional 1 μm Pd/4 μm γ-Al2O3/-Al2O3 hollow fiber membrane. The unaged encapsulated membrane exhibited good performance with ideal H2/N2 separation factors of 3000–8000 and H2 flux 0.4 mol/m2 s at 370 °C and a transmembrane pressure gradient of 4 × 105 Pa. The unaged Pd nanopore membranes had a lower initial flux and permselectivity, but exhibited superior performance with extended use (200 h). At the same conditions the unaged 2.6 μm Pd nanopore membrane had a H2 flux of 0.16 mol/m2 s and separation factor of 500 and the unaged 0.6 μm Pd nanopore membrane had a H2 flux of 0.25 mol/m2 s and separation factor of 50. Both nanopore membranes stabilized after 40 h of operation, in contrast to a continued deterioration of the permselectivity for the other membranes. An analysis of the permeation data reveals a combination of Knudsen and convective transport through membrane defects. A phenomenological, qualitative model of the synthesis and resulting structure of the encapsulated and nanopore membranes is presented to explain the permeation results.  相似文献   

16.
17.
Permeabilities and diffusion coefficients of various gases, Ar, N2, O2, CO2, CH4, C2H4, C3H8 and C4H10, were measured for Water-swollen gel cellophane membranes. No dependence of permeabilities on gas pressure below 1 atm was found. It was observed that the permeability coefficients were not related linearly to the coefficients in bulk water. For the two states of water in the membrane, an analytical method is presented to estimate the diffusion coefficients and the solubilities in free water and non-freezing water. It was found that the diffusion coefficients in non-freezing water were lower than those in free water, and the solubilities in non-freezing water were higher than in free water for all gases studied except CO2 and C2H4, which gave reverse results.  相似文献   

18.
The size and shape of free-volume holes available in membrane materials control the rate of gas diffusion and its permeability. Based on this principle, two segmented thermo-sensitive polyurethane (TSPU) membranes with functional gates, i.e. the ability to sense and respond to external thermo-stimuli, were synthesized and used for water vapor controllable permeation. Differential scanning calorimetry (DSC), positron annihilation lifetimes (PAL), water swelling and water vapor permeability (WVP) were used to evaluate how the structure of the polyurethane (PU) and the temperature influence the free-volume holes size and the water vapor permeability (WVP) of the PU membranes. DSC study reveals that TSPU with a glass transition or a crystalline transition reversible phase shows an obvious phase-separated structure and a phase transition temperature (defined as switch temperature, Ts). PAL study indicates that the free-volume holes size of TSPU is closely related to the Ts. When the temperature is higher than the Ts, the ortho-positronium (o-Ps) lifetime (τ3) and the average radius (R) of free-volume holes of TSPU membrane increase dramatically. As a result, the WVP of TSPU membrane shows a dramatic increase. Additionally, the water swelling and the WVP of TSPU membrane are found to depend on the inner structure of the polymer, and they also give different responses to temperature variation. When the temperature is higher than the Ts, there is a significant increase of WVP from 3.80 kg/m2 day to 7.63 kg/m2 day for TSPU(a) and from 4.30 kg/m2 day to 8.58 kg/m2 day for TSPU(b), respectively. Phase transition accompanying significant changes in free-volume holes size and WVP can be used to develop “smart membranes” with functional gates and controllable gas permeation.  相似文献   

19.
The permeation of benzene and acetone vapors through sulfur-cured natural rubber was studied by the time-lag method. The experimental results were analyzed by a method suggested by Meares. The zero concentration diffusion coefficient D0 was obtained by the early-time method. The Frisch time-lag equation was utilized to estimate both the solubility coefficient s and the additional parameter b required to define the concentration dependence of the diffusion coefficient: D(c) = D0 exp {bc}. This form of concentration dependence was manifested by the corresponding permeability coefficient values. At low entering penetrant pressure, where the transport coefficients are constant, indirect evidence was obtained that D0 is the mechanistically correct diffusion coefficient. The solubility coefficient values calculated for benzene vapor in natural rubber are in reasonable agreement with published equilibrium sorption data for a similar rubber compound. At higher entering penetrant pressures, average diffusion coefficients obtained at steady state tended to be larger than the corresponding average diffusion coefficients derived from the time lags. This same effect has been detected by other experimental approaches. Permeation experiments designed for this rapid method of analysis appear capable of yielding information consistent with that obtained by more time-consuming traditional methods.  相似文献   

20.
Asymmetric permeation in two-phase composite membranes with heterogeneous structures represented by a one-dimensional distribution of composition is treated theoretically on the basis of an irreversible thermodynamic transport equation. It is assumed that the permeability of one of the component phases is a monotone function of the activity of permeant while that of the other phase is constant, and that the permeability of the composite membrane is given by the volume average of the resistance coefficient, which is the inverse of permeability. Under these assumptions, it is shown that the optimal membrane which maximizes the degree of asymmetric permeation reduces to a binary laminate membrane. The condition for constructing the optimal laminate membrane is obtained explicitly. Conversely a condition on a desirable membrane component which realizes an arbitrary degree of asymmetric permeation is presented. These results can be applied to the optimal design of a membrane valve which is a chemical analog of a diode. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号