首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Magnetic properties of bio-synthesized zinc ferrite nanoparticles   总被引:1,自引:0,他引:1  
The magnetic properties of zinc ferrite (Zn-substituted magnetite, ZnyFe1-yFe2O4) formed by a microbial process compared favorably with chemically synthesized materials. A metal reducing bacterium, Thermoanaerobacter, strain TOR-39 was incubated with ZnxFe1−xOOH (x=0.01, 0.1, and 0.15) precursors and produced nanoparticulate zinc ferrites. Composition and crystalline structure of the resulting zinc ferrites were verified using X-ray fluorescence, X-ray diffraction, transmission electron microscopy, and neutron diffraction. The average composition from triplicates gave a value for y of 0.02, 0.23, and 0.30 with the greatest standard deviation of 0.02. Average crystallite sizes were determined to be 67, 49, and 25 nm, respectively. While crystallite size decreased with more Zn substitution, the lattice parameter and the unit cell volume showed a gradual increase in agreement with previous literature values. The magnetic properties were characterized using a superconducting quantum interference device magnetometer and were compared with values for the saturation magnetization (Ms) reported in the literature. The averaged Ms values for the triplicates with the largest amount of zinc (y=0.30) gave values of 100.1, 96.5, and 69.7 emu/g at temperatures of 5, 80, and 300 K, respectively indicating increased magnetic properties of the bacterially synthesized zinc ferrites.  相似文献   

5.
The crystallographic anisotropy constant K1 of monociystalline lithium ferrite films was measured by the methods of ferromagnetic resonance and rotational moments. The presence of uniaxial anisotropy in the plane of a film with the constant Ku 103 erg · cm–3 is established experimentally. The nature of the uniaxial anisotropy is explained by the anisotropy of the stresses in the plane of the film, a formula is obtained to compute the angle of deflection of the easy magnetization axis from the crystallographic direction. An estimate is made of the difference in the stresses along the axes (xz) 1010 dyne · cm–2.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, Vol. 16, No. 9, pp. 86–89, September, 1973.  相似文献   

6.
7.
Second-order electromagnetic corrections to FMR resonance field and linewidth have been calculated for a flattened spheroid surrounded by infinite and finite (spheroidal shell) dielectric. This configuration can be considered as a model for the epitaxial thin films with the dielectric substrate.Dedicated to Dr. Svatopluk Krupika on the occasion of his 65th birthday.  相似文献   

8.
We present in this study computational simulations of the ferromagnetic resonance response of magnetic nanoparticles with a uniaxial anisotropy considerably larger than the microwave excitation frequency (in field units). The particles are assumed to be randomly oriented in a two dimensional lattice, and are coupled by dipolar interactions through an effective demagnetization field, which is proportional to the packing fraction. We have included in the model fluctuations in the anisotropy field (HK) and allowed variations in the demagnetizing field. We then analyzed the line shape and line intensity as a function of both fields. We have found that when HK is increased the line shape changes drastically, with a structure of two lines appearing at high fields. The line intensity has a maximum when HK equals the frequency gap and decreases considerably for larger values of the anisotropy. The effects of fluctuations in HK and variations in the packing fraction have been also studied. Comparison with experimental data shows that the overall observed behavior is dominated by the particles with lower anisotropy.  相似文献   

9.
The magnetic properties of cobalt spherical nanoparticles (~ 5–9 nm in size) in a polymer shell are investigated using ferromagnetic resonance (FMR) spectroscopy. The metal-polymer complex is prepared through the frontal polymerization of the cobalt acrylamide (CoAAm) complex, followed by the thermolysis at a temperature of 643 K. Analysis of the ferromagnetic resonance spectra demonstrates that the material has a high blocking temperature of ~700 K. The anisotropy constant equal to 0.5 erg/cm3 is somewhat larger than the anisotropy constants characteristic of cobalt macrostructures. This difference is associated with the predominance of the surface anisotropy of nanoparticles. The surface anisotropy constant is calculated to be 0.17 erg/cm2, and the anisotropy field is determined to be ~350 Oe. It is revealed that the polymer shell affects the magnetic properties of nanoparticles.  相似文献   

10.
11.
Observation of magnetic antiresonance phenomenon is reported in 3D opal nanocomposite with embedded ferrite particles. Antiresonance at microwave frequencies of millimeter waveband was observed. It results in a sharp maximum of the reflection coefficient of an electromagnetic wave. Measurements were carried out in the frequency range from 26 to 38 GHz for two compositions of embedded ferrite particles, namely, the Co0.5Zn0.5Fe2O4 and Ni0.5Zn0.5Fe2O4. The physical nature of antiresonance is discussed.  相似文献   

12.
Nanoparticles of ZnFe2O4 have been prepared by using sol-gel method in two different mediums (acidic and basic) in order to observe the influence of the medium on the magnetic properties of the obtained nanoparticles. X-ray diffraction and Mössbauer studies of these samples show the presence of single-phase spinel structure. The average size of the particles as determined by X-ray diffraction increases with the annealing temperature from 18 to 52 nm. With the increase in particle size, magnetization decreases while the magnetization blocking temperature increases. Magnetization studies show that the samples prepared in basic medium have more ferrimagnetic nature as compared to those prepared in acidic medium. We understand this increase in magnetization as reflective of the increased degree of inversion (transfer of Fe3+ ions from octahedral to tetrahedral sites) in the particles of smaller size unit cells. From lattice parameter calculations on different particles it is determined that inversion is more favorable in the particles prepared in a basic medium than in the acidic medium due to the smaller cell size in the former.  相似文献   

13.
The electron spin resonance (ESR) spectrometer, a very sensitive instrument with fast detecting window to explore quantum phase transitions for magnetic nanoparticles, was exploited to study the fascinating interplay between thermal and quantum fluctuations in the vicinity of a quantum critical point. We have measured ESR in ferrofluid samples containing nanosize particles of Fe2O3. The evolution of the ESR spectrum with temperature suggests that quantum tunneling of spins occurs in single domain magnetic particles in the low temperature regime. The effects of various microwave fields, particle sizes, and temperatures on the magnetic states of single domain spinel ferrite nanoparticles are investigated. We can consistently explain experimental data assuming that, as the temperature decreases, the spectrum changes from superparamagnetic (SPR) to blocked SPR and finally evolves quantum superparamagnetic behaviour as the temperature lowers down further. A nanoparticle system of a highly anisotropic magnetic material can be qualitatively specified by a simple quantum spin model, or by the Heisenberg model with strong easy-plane anisotropy.Received: 29 August 2003, Published online: 15 October 2003PACS: 76.30.-v Electron paramagnetic resonance and relaxation - 75.40.Cx Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.) - 05.30.-d Quantum statistical mechanics - 75.50.Dd Nonmetallic ferromagnetic materials  相似文献   

14.
The structure of Mn0.5Zn0.5Fe2O4 spinel ferrite nanoparticles is studied as a function of their size and the experimental conditions of their synthesis using X-ray absorption spectroscopy. The nanoparticles of different sizes down to approximately 2 nm and with a narrow size distribution were synthesized using co-precipitation in reverse microemulsions. Simultaneous refinement of the X-ray absorption fine structure (EXAFS) of three constituting metals shows a migration of Mn and Zn ions to the octahedral site of the spinel lattice compensated by the corresponding migration of the Fe ions. To a smaller extent, Mn ions switch the occupation site already in bulk and in larger nanoparticles, while a sporadic migration of Zn is detected only in the nanoparticles with sizes below approximately 5 nm. X-ray absorption near edge structure (XANES) reveals considerable variations in the position of the Mn K edge, suggesting the average Mn valence in the nanoparticles to be higher than 3+. Annealing at 500 °C relaxes the structure of as-synthesized nanoparticles toward the structure of the ceramic bulk standard. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Single phase zinc ferrite (ZnFe2O4) nanoparticles have been prepared by the coprecipitation method without any subsequent calcination. The effects of precipitation temperature in the range 20–80 °C on the structural and the magnetic properties of zinc ferrite nanoparticles were investigated. The crystallite size, microstructure and magnetic properties of the prepared nanoparticles were studied using X-ray diffraction (XRD), Fourier transmission infrared spectrum, transmission electron microscope (TEM), energy dispersive X-ray spectrometer and vibrating sample magnetometer. The XRD results showed that the coprecipitated nanoparticles were single phase zinc ferrite with mixture of normal and inverse spinel structures. Furthermore, ZnFe2O4 nanoparticles have the crystallite size in the range 5–10 nm, as confirmed by TEM. The magnetic measurements exhibited that the zinc ferrite nanoparticles synthesized at 40 °C were superparamagnetic with the maximum magnetization of 7.3 emu/g at 10 kOe.  相似文献   

16.
Catalyst is considered to be the most crucial parameter for the growth of carbon nanotubes. In this work we study the ferromagnetic resonance (FMR) spectra of the catalyst nanoclusters. Moreover we report for the first time the angle FMR studies of catalyst particles with and without CNT layer. The dependencies of the FMR spectra, X-ray diffraction (XRD) patterns, Raman spectra and morphology of the CNT layers on the growth conditions are discussed.  相似文献   

17.
The x values in the nonstoichiometrie chemical formula Zn1+xO have been measured in the temperature range from 400 to 1200°C under oxygen pressures from 1 to 10?6 atm, and also 1 atm of air. The x values varied between 0.00824 and 0.06370 under the various oxygen pressures. The enthalpies of formation of excess zinc in zinc oxide were in general less than 7.40 kcal/mole under the above conditions, all positive values representing an endothennic process. The plots of log x vs log Po2 (or log x = 1/n log Po2) are linear, and the 1/n values from the slopes of the plots are ?114.0to?111.1 in the temperature range 400–900°C. Many physical properties of zinc oxide such as electrical conductivity, catalytic effects and defects can be explained on the basis of the x values and the mechanism of formation of the nonstoichiometric compositions of the oxide.  相似文献   

18.
Calculated magnetophoretic mobility of a variety of magnetic compounds has identified FeCo to be an alternative for magnetite in in vitro biological cell separations. The synthesis of FeCo nanoparticles and the resulting microstructure is discussed as a function of the particle size. Their synthesis kinetics is modeled using a consecutive decomposition and growth model and is compared to experimental data.  相似文献   

19.
ZnO nanoparticles with the wurtzite structure were prepared by chemical methods at low temperature in aqueous solution. The size of the nanoparticles is in the range from about 10 to 30 nm. Ferromagnetic properties were observed from 2 K to room temperature and above. Magnetization versus temperature, M(T), and isothermal M(H) measurements were obtained. The coercive field clearly shows ferromagnetism above room temperature. An exchange bias was observed, and we related this behavior to the core-shell structure present in the samples. The chemical synthesis, structure, and defects in the bulk related to oxygen vacancies are the main factors for the observed magnetic behavior.  相似文献   

20.
The peculiarities of the ferromagnetic resonance of an amorphous ferromagnet in which a certain number of atoms forms the two-level systems are studied. The logarithmic dependence upon the temperature and the applied magnetic field of the frequency shift of the ferromagnetic resonance is obtained. The comparison of this theoretical dependence with experimental results gives a chance of the direct examination of the idea of the existence of the two-level systems. The dependence upon the temperature and the magnetic field of the frequency linewidth is also calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号