首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the identification of Fe3O4 (magnetite) and α-Fe2O3 (hematite) in iron oxide thin films grown on α-Al2O3(0 0 0 1) by evaporation of Fe in an O2-atmosphere with a thickness of a few unit cells. The phases were observed by Raman spectroscopy and confirmed by X-ray diffraction (XRD). Magnetite appeared independently from the substrate temperature and could not be completely removed by post-annealing in an oxygen atmosphere as observed by X-ray diffraction. In the temperature range between 400 °C and 500 °C the X-ray diffraction shows that predominantly hematite is formed, the Raman spectrum shows a mixture of magnetite and hematite. At both lower and higher substrate temperatures (300 °C and 600 °C) only magnetite was observed. After post-annealing in an O2-atmosphere of 5 × 10?5 mbar only hematite was detectable in the Raman spectrum.  相似文献   

2.
Iron-doped nickel oxide (Fe0.01Ni0.99O, abbreviated as FNO) nanoparticles were prepared by sol–gel process using 1,3-propanediol as a solvent and also as a chelating agent, and calcined at the various temperatures (400–1000 °C) for 2 h. The phase composition and the microstructure of the calcined products were investigated by X-ray diffraction and scanning electron microscopy techniques, respectively. Magnetic properties were measured at room temperature using a vibrating sample magnetometer. All calcined samples showed the single phase of FNO cubic rock-salt structure without the presence of any impurity phases. The crystallite size from XRD and particle size from SEM increased as calcining temperature increased. The FNO powders calcined at 400?600 °C revealed the uniform and dense spherical particles in nanosize. The room-temperature ferromagnetism was observed for all samples. When the calcining temperature was increased, the saturation magnetization decreased whereas the coercivity increased, corresponding to the less dense and larger particles. The calcined sample at 400 °C had the best magnetic properties with the highest Ms of 5.34 emu/g (at 10 kOe) and the lowest Hc of 372 Oe.  相似文献   

3.
Synthesis of scorodite (FeAsO4·2H2O) using dynamic action agglomeration and the oxidation effect from ultrasound irradiation was investigated. The effect of different reaction temperatures (90, 70, 50, and 30 °C) on the size and morphology of scorodite particles synthesized under O2 gas flow and ultrasound irradiation was explored because the generation of fine bubbles depends on the solution temperature. At 90 °C, the size of scorodite particles was non-homogeneous (from fine particles (<1 μm) to large particles (>10 μm)). The oxidation–reduction potential (ORP) and yield at 90 °C showed lower values than those at 70 °C. The scorodite particles, including fine and non-homogeneous particles, were generated by a decrease in the oxidation of Fe(II) to Fe(III) and promotion of dissolution caused by the generation of radicals and jet flow from ultrasound irradiation. Using ultrasound irradiation in the synthesis of scorodite at low temperature (30 °C) resulted in the appearance of scorodite peaks in the X-ray diffraction (XRD) pattern after a reaction time of 3 h. The peaks became more intense with a reaction temperature of 50 °C and crystalline scorodite was obtained. Therefore, ultrasound irradiation can enable the synthesis of scorodite at 30 °C as well as the synthesis of large particles (>10 μm) at higher temperature. Oxide radicals and jet flow generated by ultrasound irradiation contributed significantly to the synthesis and crystal growth of scorodite.  相似文献   

4.
Polycrystalline and epitaxial (1 0 0), (1 1 0), and (1 1 1)-oriented Ni3Pt, NiPt, and NiPt3 films were deposited over a range of growth temperatures from 80°C to 700°C. Films grown at moderate temperatures (200–400°C) exhibit growth-induced properties similar to Co–Pt alloys: enhanced and broadened Curie temperature, perpendicular magnetic anisotropy and large coercivity. As in Co–Pt, the magnetic properties suggest a clustering of Ni into platelets on the growth surface, as the films are being grown. Unlike Co–Pt, however, NiPt films exhibit a strong orientational dependence of anisotropy and enhanced Curie temperature, possibly resulting from different types of surface reconstructions which affect the growth surface.  相似文献   

5.
The effect of sintering temperature on ZnO varistor properties is investigated in the range of 700–1400 °C. The increase of sintering temperature does not influence the well-known peaks related to hexagonal wurtzite structure of ZnO ceramics, whereas the average grain size is increased from (1.08 to 2.1 μm). With increasing sintering temperature up to 1200 °C, the nonlinear region is clearly observed in the I–V characteristics, whereas this region is completely absent only for the sample sintered at 1400 °C. As the sintering temperature increased, the breakdown field decreased over a wide range from 2838.7 to 6.41 V/cm, while the nonlinear coefficient is increased in the range of (23.86–47.76). Furthermore, the barrier height decreased from 1.76 to 0.974 eV, whereas electrical conductivity is improved. On the other hand, the optical band gap is gradually decreased in the range of 3.08–2.70 eV with increasing sintering temperature. These results showed a strong correlation between sintering temperature and the properties of ZnO ceramic varistor.  相似文献   

6.
We present large-area, edge-emitting, photonic-crystal (PC) distributed-feedback (DFB) quantum cascade lasers (QCLs) emitting at λ∼7.6 μm and operating up to a heat sink temperature of 80 °C. The lasers use the anticrossing of index- and Bragg-guided dispersions of rectangular lattice to control the optical mode in the wafer plane. Single-mode operation with a high signal-to-noise ratio of about 20 dB and narrow beam divergence of 6.2° was obtained. A high peak power of 630 mW at 20 °C and still more than 160 mW at 60 °C was observed. Such a high performance single-mode device is very important to expand the potential applications in the long-wave infrared range.  相似文献   

7.
The oxidation of Ni–YSZ cermet as well the reduction of re-oxidized Ni–YSZ cermet was investigated by using temperature-programmed oxidation (TPO), temperature-programmed reduction (TPR) and scanning electron microscope (SEM). The scanning electron microscope (SEM) photographs and temperature-programmed reduction (TPR) profiles indicated that the sintering of smaller nickel oxide crystallites to larger aggregates occurred concurrently with the formation of smaller nickel oxide crystallites from the oxidation of nickel at 800 °C, and the sintering of smaller nickel oxide crystallites at 600 °C was slower than that at 800 °C. The SEM results showed that each Ni particle was separated into a lot of smaller NiO particles during oxidation. The TPO profiles showed that two kinds of nickel particles exist in the anode reduced at 800 and 600 °C, one with high activity towards oxidation for the nickel crystallites directly from reduction, and another one with low activity towards oxidation for the sintered nickel particles. The Ni–YSZ anodes reduced at higher temperature showed higher re-oxidation temperature than the one reduced at lower temperature because of the accelerated passivating and sintering of the smaller nickel particles at higher temperature. The re-oxidation profiles were almost unchanged during redox cycling at 600 °C, whereas the re-oxidation peak temperature decreased during redox cycling at 800 °C, indicating that the primary nickel grains split to smaller ones upon cyclic reduction at higher temperature.  相似文献   

8.
A novel method for simultaneous measurement of refractive index and temperature based on a small core and cladding diameters thinned fiber Mach–Zehnder interferometer (MZI) using singlemode-multimode-thinned-multimode-singlemode (SMTMS) fiber structure is proposed. Experiments indicate that the selected two interference orders have sensitivities of ?16.1936 nm/RIU and 0.0534 nm/°C, and ?23.0473 nm/RIU and 0.0575 nm/°C, respectively, among RI range from 1.3325–1.3720 and temperature range from 22 °C–82 °C. We can thus use the coefficient matrix of these two peaks to simultaneously determine the surrounding refractive index and temperature. The fabrication is easy, safe and cost effective, includes only the fusion splicing, making the device properly attractive for practical sensor applications.  相似文献   

9.
The high index Si(5 5 12) surface offers morphological trenches, which can be interesting for epitaxial growth. In this study, the evolution of Ga adsorption at a very low flux rate of 0.03 ML/min on high index trenched Si(5 5 12) ? 2 × 1 reconstructed surface at various substrate temperatures ranging from room temperature (RT) to 600 °C has been investigated using in-situ AES, LEED and EELS. The Auger uptake curves, which plot the Ga(LMM)/Si(LVV) Auger intensity ratio with Ga adsorption time, show that Ga grows in layer plus islands mode for substrate temperatures in the RT to 350 °C range, while it grows in Volmer–Weber (3D islands) for higher substrate temperatures (> 350 °C). We also arrive at a complete 2D superstructural phase diagram for Ga/Si(5 5 12) interfacial system that shows the pathways to attain the different superstructural phases. The formation of Ga nanowires as (2 2 5), (3 3 7) phase and Ga 3D islands in the (1 1 2) ? 6 × 1, (1 1 2) ? 6 × 2 phases and other Ga induced superstructural phases like (7 7 17) + 2x(1 1 3), (2 2 5) + (3 3 7), 1 × 1 has been carefully followed. The electronic structures of each of the observed phases have been probed by EELS and each of them is shown to have characteristic features.  相似文献   

10.
Nanoscale Co3O4 particles were doped into MgB2 tapes with the aim of developing superconducting wires with high-current-carrying capacity. Fe-sheathed MgB2 tapes with a mono-core were prepared using the in situ powder-in-tube (PIT) process with the addition of 0.2–1.0 mol% Co3O4. The critical temperature decreased monotonically with an increasing amount of doped Co3O4 particles for all heat-treatment temperatures from 600 to 900 °C. However, the transport critical current density (Jc) at 4.2 K varied with the heat-treatment temperatures. The Jc values in magnetic fields ranging from 7 to 12 T decreased monotonically with increasing Co3O4 doping level for a heat-treatment temperature of 600 °C. In contrast, some improvements on the Jc values of the Co3O4 doped tapes were observed in the magnetic fields below 10 T for 700 and 800 °C. Furthermore, Jc values in all the fields measured increased as the Co3O4 doping level increase from 0 to 1 mol% for 900 °C. This heat-treatment temperature dependence of the Jc values could be explained in terms of the heat-treatment temperature dependence of the irreversibility field with Co3O4 doping.  相似文献   

11.
Zinc hydroxide particles were prepared by a two-step process employing zinc nitrate hexahydrate, urea, ethylene glycol, water and p-toluene-sulfonic acid monohydrate (p-TSA). We used different concentrations of the reactants as well as different volume ratios of the solvents. ZnO particles were obtained by thermal treatment of the reaction products at two different temperatures: 350 °C and 500 °C. The samples were characterized by scanning field emission electron microscopy (SEM), X-ray diffraction (XRD) spectroscopy, BET analysis, thermogravimetry (TG) analysis and photoluminescence (PL) spectroscopy. It was found that after the thermal treatment particles become smaller, with the p-TSA concentration strongly affecting the morphology of the particles. Luminescence properties of the samples probed by PL at 8 K and room temperature exhibited a remarkable correlation with specimens′ nanomorphology. Luminescent features at ~2.0–2.2 eV, ~2.4–2.5 eV, ~2.65 eV, ~2.9 eV, ~3.0–3.1 eV and ~3.3 eV were observed in most specimens, although their relative intensity and temperature dependence were specific to an individual group of samples vis-à-vis their growth history and morphology.  相似文献   

12.
The effect of deformation temperature on the strain localization has been evaluated by an adapted digital image correlation (DIC) technique during tensile deformation. The progress of strain localization was traced by the corresponding strain maps. The electron backscatter diffraction analysis and tint etching technique were utilized to determine the impact of martensitic transformation and deformation twinning on the strain localization in both elastic and plastic regimes. In elastic regime the narrow strain bands which are aligned perpendicular to the tension direction were observed in temperature range of 25 to 180 °C due to the stress-assisted epsilon martensite. The strain bands were disappeared by increasing the temperature to 300 °C and reappeared at 400 °C due to the stress-assisted deformation twinning. In plastic regime strain localization continued at 25 °C and 180 °C due to the strain-induced alfa-martensite and deformation twinning, respectively. The intensity of plastic strain localization was increased by increasing the strain due to the enhancement of martensite and twin volume fraction. The plastic strain showed more homogeneity at 300 °C due to the lack of both strain-induced martensite and deformation twinning.  相似文献   

13.
《Surface science》2003,470(1-2):193-200
We have conducted photoemission electron microscope (PEEM) and Auger electron spectroscopy (AES) studies on the Cu(30 nm)/3C–SiC(1 0 0) and Cu(30 nm)/Si(1 0 0) samples annealed successively up to 850 °C. With PEEM, lateral diffusion of Cu atoms on the 3C–SiC substrate was observed at 400 °C while no lateral diffusion was seen for the Cu/Si(1 0 0) samples up to 850 °C. The 30 nm Cu thin film on 3C–SiC began to agglomerate at 550 °C, similar to the case for the Cu/Si(1 0 0) system. No further spread of the lateral diffusion region was found in subsequent annealing up to 850 °C for Cu/3C–SiC while separated regular-sized dot structures were found at 850 °C for Cu/Si(1 0 0). AES studies of Cu/Si(1 0 0) system showed partial interface reaction during Cu deposition onto the Si(1 0 0) substrate and oxidation of the resultant Cu3Si to form SiO2 on the specimen surface at room temperature in air. Surface segregation of Si and C was observed after annealing at 300 °C for Cu/Si(1 0 0) and at 850 °C for the Cu/3C–SiC system. We have successfully elucidated the observed phenomena by combining PEEM and AES considering diffusion of the constituent elements and/or reaction at interfaces.  相似文献   

14.
Crystallization process of Gd2Ti2O7 precursor's powder prepared by Pechini-type polymerized complex route has been studied under isothermal experimental conditions in an air atmosphere. It was found that the crystallization proceeds through two-parameter Šesták–Berggren (SB) autocatalytic model, in the operating temperature range of 550 °C≤T≤750 °C. Based on the behavior of SB parameters (M, N), it was found that in the lower operating temperature range, the crystallites with relatively low compactness exist, which probably disclosed low dimensionality of crystal growth from numerous nucleation sites, where the amorphous solid is produced. In the higher operating temperature region (above 750 °C), it was established that a morphological well-defined and high-dimensional particles of the formed pyrochlore phase can be expected. It was found that at T=850 °C, there is a change in the rate-determining reaction step, from autocatalytic into the contracting volume mechanism.  相似文献   

15.
The transparent nanocrystalline thin films of undoped zinc oxide and Mn-doped (Zn1−xMnxO) have been deposited on glass substrates via the sol–gel technique using zinc acetate dehydrate and manganese chloride as precursor. The as-deposited films with the different manganese compositions in the range of 2.5–20 at% were pre-heated at 100 °C for 1 h and 200 °C for 2 h, respectively, and then crystallized in air at 560 °C for 2 h. The structural properties and morphologies of the undoped and doped ZnO thin films have been investigated. X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology and microstructure of the thin films. Optical properties of the thin films were determined by photoluminescence (PL) and UV/Vis spectroscopy. The analyzed results indicates that the obtained films are of good crystal quality and have smooth surfaces, which have a pure hexagonal wurtzite ZnO structure without any Mn related phases. Room temperature photoluminescence is observed for the ZnO and Mn-doped ZnO thin films.  相似文献   

16.
We report a novel all-fiber narrow-bandwidth intermodal Mach–Zehnder interferometer (MZI) based on a long-period fiber grating (LPFG) combined with a fiber bitaper, and the MZI has no special limit for the resonant wavelength of the LPFG. Its responses to temperature and axial strain are studied theoretically and experimentally. Experimental results indicate that the temperature sensitivity is 0.0585 nm/°C within the temperature range from 30 °C to 90 °C and the axial strain sensitivity of 0.00013 nm/με can be neglected. Furthermore, as only the common single-mode fiber (SMF) is required during the fabrication process, the proposed device is cost effective and has good practicability in the optical sensing systems.  相似文献   

17.
Cadmium stannate thin films were prepared by spray pyrolysis technique using cadmium acetate and tin(II) chloride precursors at substrate temperatures 450 °C and 500 °C. XRD pattern confirms the formation of orthorhombic (1 1 1) cadmium stannate phase for the film prepared at substrate temperature of 500 °C, whereas, films prepared at 450 °C are amorphous. Film formation does not occur at substrate temperature from 300 to 375 °C. SEM images reveal that the surface of the prepared Cd2SnO4 film is smooth. The average optical transmittance of ∼86% is obtained for the film prepared at substrate temperature of 500 °C with the film thickness of 400 nm. The optical band gap value of the films varies from 2.7 to 2.94 eV. The film prepared at 500 °C shows a minimum resistivity of 35.6 × 10−4 Ω cm.  相似文献   

18.
6061 aluminum alloy was treated by MAO at various temperatures of the alkali silicate electrolyte using pulsed bipolar current mode for ten minutes. The surface microstructures and properties were studied using SEM, EDX, and XRD. The infrared emissivities of the MAO ceramic coatings were measured at the 70 °C using FTIR spectrometer. The electrolyte temperature strongly affected all the surface properties. The MAO alumina ceramics prepared in cold electrolytes have volcano-like and accumulated particles microstructures, while those prepared in hot electrolytes were: rougher, thinner and contained grainy spherical hollow bulgy microstructures with more pore density and more sillimanite and cristobalite phases which enhanced the IR emissivity. Also, the increment of sillimanite and cristobalite phases moved the apparent peaks toward longer wavelengths, and broadened the opaque region of the IR spectra. As a result, the increment of electrolyte temperature from 12.3 °C to 90.5 °C increased the average of LWIR emissivity from 80.4% to 94.4%, respectively, for the MAO ceramic coatings.  相似文献   

19.
Copper particles were electrolessly deposited on a palladium aerosol activated polymer membrane in the presence of ultrasound. An application of ultrasound introduced a faster deposition (220 μg min?1 in deposition rate) and finer copper particles (9 nm in crystallite size) than those (11 and 41 μg min?1; 27 and 32 nm) in the absence of ultrasound (i.e. respectively 20 and 45 °C in bath temperature with mechanical agitation). A better performance of methanol steam reforming (0.59 in mean conversion during 5 h operation; 1.3 and 1.6 times respectively higher than those from 20 to 45 °C cases) at a 300 °C reaction temperature was materialized for the ultrasound application, probably due to a finer (i.e. a more textured) copper particle deposition on a polymer membrane.  相似文献   

20.
We propose and demonstrate a fiber in-line Mach–Zehnder interferometer using thin-core fibers. This in-line interferometer is composed of a short section of thin-core fiber inserted between two single mode fibers (SMF), and demonstrated as a strain and temperature sensor in this study. A strain sensitivity of ?1.83 pm/με with a measurement range of 0?2000 με, and the temperature sensitivity of ?72.89 pm/°C with a temperature variation of 50 °C are achieved. We also discussed that the influence of strain and temperature change on the relative power ratios among the excited cladding modes in thin-core fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号