首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report measurements of the thermodynamic properties of liquid di-isodecyl phthalate (DIDP) and an equation of state determined therefrom. The speed of sound in DIDP was measured at temperatures between (293.15 and 413.15) K and a pressures between (0.1 and 140) MPa with a relative uncertainty of 0.1%. In addition, the isobaric specific heat capacity was measured at temperatures between (293.15 and 423.15) K at a pressure of 0.1 MPa with a relative uncertainty of 1%, and the density was measured at temperatures between (273.15 and 413.15) K at a pressure of 0.1 MPa with a relative uncertainty of 0.015%. The thermodynamic properties of DIDP were obtained from the measured speeds of sound by thermodynamic integration starting from the initial values of density and isobaric specific heat capacity obtained experimentally. The results have been represented by a new equation of state containing nine parameters with an uncertainty in density not worse than 0.025%. Comparisons with literature data are made.  相似文献   

2.
Thermodynamic properties of fluids are both required for designing and implementing industrial processes and in different research fields; in particular they play a fundamental role in the development of equations of state (EoS). This paper describes very accurate speed of sound measurements in liquid-phase acetone along eleven isotherms in the temperature range of (248.15 and 298.15) K and over a wide range of pressure (up to 100 MPa). Since very accurate direct measurements of the fluids properties (like density and isobaric heat capacity) are relatively easy at atmospheric pressure, but difficult at elevated pressures, a combination of speed of sound measurements and numerical integration offers a well balanced approach to determine the thermodynamic properties of liquids. In this case, density and heat capacity of the liquid at high pressures are calculated by numerical integration of u?2(p, T), using, as initial values, the same quantities (density and heat capacity) at atmospheric pressure as a function of temperature. The experimental values of speed of sound are subjected to an overall estimated uncertainty of about 0.1%.  相似文献   

3.
The density and speed of sound of hexadecane have been measured with two instruments. Both instruments use the vibrating-tube method for measuring density. Ambient pressure (83 kPa) density and speed of sound were measured with a commercial instrument from T = (290.65 to 343.15) K. Adiabatic compressibilities are derived from the density and speed of sound data at ambient pressure. Compressed liquid density was measured in a second instrument and ranged from T = (310 to 470) K with pressures from (1 to 50) MPa. The overall relative expanded uncertainty of the compressed liquid density measurements is 0.10–0.13% (k = 2). The overall relative expanded uncertainty (k = 2.3) of the speed of sound measurements is 0.2% and that of the ambient pressure density measurements is approximately 0.04% (k = 2.3). The ambient pressure and compressed liquid density measurements are correlated within 0.1% with a modified Tait equation.  相似文献   

4.
Heat capacities and speed of sound of (acetonitrile + 2-methoxyethanol) mixtures at 298.15 K and the densities of the same mixtures at T = (308.15 and 318.15) K were determined over the whole composition range. The excess of molar volume and isobaric heat capacity of the mixture, the partial molar volumes and heat capacities of both components of the mixture as well as the adiabatic and isothermal coefficients of compressibility and their excess were calculated from the obtained experimental data. The internal pressure of the examined system was also calculated. The results of investigations were analyzed and discussed. The behavior of the analyzed functions is similar to that observed in the case of the mixtures of acetonitrile with some aprotic solvents examined earlier.  相似文献   

5.
An acoustic Greenspan viscometer was used to measure the kinematic viscosity and speed of sound in the gases: CO, CO2, SiF4, SF6, C4F8, and NH3. The measurements cover the temperature range 220 K to 375 K, and pressures up to 3.4 MPa or 80% of the saturation pressure.The viscometer was calibrated at 298.16 K using five reference gases, Ar, He, N2, CH4, and C3H8, for which the viscosity and the speed of sound are known. With this calibration, we estimated the relative standard uncertainty of the kinematic viscosity ur(η/ρ) = 0.006 and the uncertainty of speed of sound ur(c) = 0.0001, except for very low pressures where the signal-to-noise ratio deteriorates and quality factor for the Helmholtz mode is ?20.  相似文献   

6.
The speed of sound in (heptane + dodecane) mixtures was measured over the whole concentration range at pressures up to 101 MPa and within the temperature range from (293 to 318) K. The density of (heptane + dodecane) was measured in the whole composition range under atmospheric pressure and at temperatures from (293 to 318) K. The densities and heat capacities of these binaries at the same temperatures were calculated for pressures up to 100 MPa from the speeds of sound under elevated pressures together with the densities and heat capacities at atmospheric pressure. The effects of pressure and temperature on the excess molar volume and the excess molar heat capacity are discussed.  相似文献   

7.
We report measurements of the speed of sound in mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and at pressures up to 60 MPa. The measurements were made using a dual path pulse-echo apparatus operating at a frequency of 5 MHz. We have also measured the isobaric specific heat capacity of each mixture as a function of temperature at ambient pressure, by means of a Setaram DSC III microcalorimeter. The experimental results have been combined with literature data for the density of the same mixtures as a functions of temperature at ambient pressure to obtain the density, isobaric specific heat capacity, and other thermodynamic properties at temperatures between 298.15 K and 343.15 K and at pressures up to 60 MPa. Detailed comparisons with the literature data are presented.  相似文献   

8.
An apparatus for accurate measurements of the sound velocity in fluids is described, which is based on the pulse-echo technique, and operates up to 30 MPa in the temperature range between (250 and 350) K. The expanded uncertainties (k = 2) in the speed of sound measurements are 0.006%, 6 mK in the temperature, 2.1 hPa in the pressure up to 3 MPa, and 23.9 hPa above this value. Measurements of the speed of sound for nitrogen from (250 to 350) K and for water at temperatures between (303.15 and 323.15) K are presented at pressures up to 30 MPa to validate the new apparatus. The expanded overall uncertainty of the measurements on nitrogen and water were estimated to be 0.011% and 0.006%, respectively. The speed of sound of both fluids was compared with literature sources showing an excellent agreement among them, with relative deviations lower than 0.01% in nitrogen and 0.006% in water.  相似文献   

9.
A single-sinker magnetic suspension densimeter based on Archimedes’ buoyancy principle is described. Density measurements on high-purity nitrogen demonstrate the performance of the densimeter. Comprehensive (p, ρ, T) measurements at low densities on a gaseous mixture with mole fraction of (0.8977CH4 + 0.1023N2) were carried out on this densimeter at six temperatures from (170.586 to 270.054) K and at pressures ranging from (0.1333 to 1.5945) MPa. The overall uncertainty in density is estimated to be 0.1%. The uncertainty in temperature is estimated to be 5 mK and that in pressure is 250 Pa for (0 to 1.5) MPa and 390 Pa for (1.5 to 3) MPa, respectively. The experimental results of the (methane + nitrogen) mixture were compared with REFPROP 9.0, which used GERG-2008 and AGA8 equations of state to predict thermophysical properties of natural gas. The absolute relative deviations of density measurements are all within 0.1%. Meanwhile the experimental results were correlated using the virial equation of state (Virial EOS) with three different mixing rules. The calculated results using the virial EOS combined with VDW mixing rule show good agreement with the experimental data.  相似文献   

10.
11.
Recommended vapor pressures of solid benzene (CAS Registry Number: 71-43-2) which are consistent with thermodynamically related crystalline and ideal-gas heat capacities as well as with properties of the liquid phase at the triple point temperature (vapor pressure, enthalpy of vaporization) were established. The recommended data were developed by a multi-property simultaneous correlation of vapor pressures and related thermal data. Vapor pressures measured in this work using the static method in the temperature range from 233 K to 260 K, covering pressure range from 99 Pa to 1230 Pa, were included in the simultaneous correlation. The enthalpy of sublimation was established with uncertainty significantly lower than the previously recommended values.  相似文献   

12.
The speed of sound in {(1  x)CH4 + xN2} has been measured with a spherical acoustic resonator. Two mixtures with x = (0.10001 and 0.19999) were studied along isotherms at temperatures between 220 K and 400 K with pressures up to 20 MPa; a few additional measurements at p = (25 and 30) MPa are also reported. A third mixture with x = 0.5422 was studied along pseudo-isochores at amount-of-substance densities between 0.2 mol · dm−3 and 5 mol · dm−3. Corrections for molecular vibrational relaxation are discussed in detail and relaxation times are reported. The overall uncertainty of the measured speeds of sound is estimated to be not worse than ±0.02%, except for those measurements in the mixture with x = 0.5422 that lie along the pseduo-isochore at the highest amount-of-substance density. The results have been compared with the predictions of several equations of state used for natural gas systems.  相似文献   

13.
We have evaluated the accuracy of the heat capacity option of a Quantum Design physical property measurement system (PPMS) by measuring the heat capacity of various types of conducting and insulating samples over the temperature range from (2 to 300) K. In particular, the accuracy of measurements on a copper pellet was determined to be ±2% for 2 K < T < 20 K and ±0.6% for 20 K < T < 300 K, however similar measurements on a powdered sample of benzoic acid had errors as high as 20%. A new method for heat capacity measurements of powdered samples using a PPMS system has been developed that allows us to obtain heat capacity measurements for both insulating and conducting powdered samples with an accuracy of ±1% from (20 to 300) K and ±2% to ±5% for T < 20 K. Since the heat capacity of substances (and corresponding entropy contribution) is small at low temperatures for lattice-only contributions, the accuracy of ±2% to ±5% below 20 K is considered acceptable. As a test of the new method, the heat capacity of powdered bulk hematite has been measured in the temperature range from (2 to 300) K with the PPMS, and its standard entropy at T = 298.15 K was calculated to be (87.33 and 87.27) J · K?1 · mol?1, which deviates ?0.08% and ?0.15% from the accepted reference value, respectively. We recommend that this new method become the standard for accurate heat capacity measurements on insulating powdered samples using a PPMS system and the corresponding thermodynamic calculations.  相似文献   

14.
In this paper, some new physicochemical properties of (2-methyl-2-butanol + heptane) are investigated using an acoustic method. Of clear interest to us is the study of the effect of branched structure of alcohol on association in mixtures with heptane and consequently, the effect of temperature and pressure on deviations from ideal solution behaviour. Thus, this work presents experimental properties and theoretical study of (2-methyl-2-butanol + heptane) as functions of temperature and pressure over the entire composition range. The densities and speeds of sound in (2-methyl-2-butanol + heptane) have been measured for temperatures ranging from (293 to 318) K under atmospheric pressure and under elevated pressures up to 101 MPa, respectively. The densities, heat capacities and appropriate excesses of these binaries were calculated for the same temperatures and for pressures up to 100 MPa. The acoustic method was applied in the calculations. The effects of pressure and temperature on the excess molar volume and the excess molar heat capacity of (2-methyl-2-butanol + heptane) are explained in terms of the influence of the molecular size and configuration of the alcohols on their self-association capability, packing effect, and the non-specific interactions between the 2-methyl-2-butanol and heptane basing on the results obtained from the modified ERAS model.  相似文献   

15.
The speeds of sound in 1-hexanol and 2-ethyl-1-butanol have been measured over the temperature range from (293.15 to 318.15) K and at pressures up to 101 MPa. The densities have been measured within the temperature range from (283.15 to 343.15 or 353.15) K under atmospheric pressure. For the measurements, a pulse-echo-overlap method and a vibrating tube densimeter have been used. Additionally, in the case of 2-ethyl-1-butanol, the isobaric heat capacities from T = (293.15 to 323.15) K at atmospheric pressure have been measured by means of a DSC calorimeter. The experimental results are then used to calculate the densities and isobaric heat capacities as a function of temperature and pressure by means of a numerical integration technique. The effects of pressure and temperature on these and the related properties are discussed. Densities are correlated by means of the Tait equation.  相似文献   

16.
We combine accurate ab initio calculations of the second and third density virial coefficients, B(T) and C(T), of 4He with measurements of its (p–ρ–T) behavior to determine the fourth density virial coefficient D(T). The measurements were made with a two-sinker, magnetic-suspension densimeter at pressures up to 38 MPa. The measurements on isotherms from T = 223 K to T = 323 K were previously published; new measurements from T = 323 K to T = 500 K are presented here. On each isotherm, a regression of the virial expansion was constrained to the ab initio values of B(T) and C(T); the regression determined D(T) as well as two apparatus-dependent parameters that compensated for systematic errors in the measurements. The percentage uncertainties of D(T) ranged from 2.6% at T = 223 K to 9.5% at T = 400 K to 24.7% at T = 500 K, where these uncertainties are expanded uncertainties with coverage factor of k = 2 corresponding to a 95% confidence interval. These uncertainties are 1/6th of the uncertainty obtained without the ab initio values of B(T) and C(T). The apparatus-dependent parameters can be used to calibrate the densimeter, and this will reduce the uncertainty of other measurements made with this two-sinker densimeter. The new values of D(T) will find applications in accurate gas metrology, such as a primary pressure standard based on the refractive index of helium.  相似文献   

17.
A high-pressure flow calorimeter has been used to determine highly accurate isobaric heat capacities for different viscous fluids, squalane (SQN), bis(2-ethylhexyl) sebacate (DEHS) and bis(2-ethylhexyl) phthalate (DEHP) from T = (293.15 to 353.15) K and up to 30 MPa. The experimental device was adapted for viscous liquids at high pressure and it can measure heat capacities with an estimated total uncertainty better than 1%. The isobaric heat capacity values were analysed together with their temperature and pressure dependences. In addition, a fitting equation of the experimental molar isobaric heat capacity for these viscous fluids as a function of temperature and pressure was proposed.  相似文献   

18.
There has been some controversy regarding the uncertainty of measurements of thermal properties using differential scanning calorimeters, namely heat capacity of liquids. A differential scanning calorimeter calibrated in enthalpy and temperature was used to measure the isobaric specific heat capacity of water and aqueous solutions of cesium chloride, in the temperature range 298 K to 370 K, for molalities up 3.2 mol · kg−1, at p = 0.1 MPa, with an estimated uncertainty (ISO definition) better than 1.1%, at a 95% confidence level. The measurements are completely traceable to SI units of energy and temperature.The results obtained were correlated as a function of temperature and molality and compared with other authors, obtained by different methods and permit to conclude that a DSC calibrated by Joule effect is capable of very accurate measurements of the isobaric heat capacity of liquids, traceable to SI units of measurement.  相似文献   

19.
In this paper, physical properties of a high purity sample of the ionic liquid 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [PMim][NTf2], and its binary mixtures with methanol, ethanol, 1-propanol, and 2-propanol were measured at atmospheric pressure. The temperature dependence of density, refractive index and speed of sound (293.15 to 343.15) K and dynamic viscosity (298.15 to 343.15) K were studied at atmospheric pressure by conventional techniques for the pure ionic liquid. For its mixtures with alcohols, density, speed of sound, and refractive index were measured at T = 298.15 K over the whole composition range. The thermal expansion coefficient of the [PMim][NTf2] was calculated from the experimental results using an empirical equation, and values of the excess molar volume, excess refractive index, and excess molar isentropic compressibility for the binary systems at the above mentioned temperature, were calculated and fitted to the Redlich–Kister equation. The heat capacity of the pure ionic liquid at T = 298.15 K was determined using DSC.  相似文献   

20.
The speed of sound in the temperature (303.15 to 373.15) K and pressure range (0.1 to 100) MPa was measured for the liquid 3-pentanol, 3-methyl 3-pentanol, and 3-ethyl-3-pentanol. These results combined with the densities and isobaric heat capacity at atmospheric pressure obtained from the literature were used to calculate the density, and the isentropic and isothermal compressibilities in the same range of pressure and in the temperature interval (303.15 to 368.15) K by means of a predictor-corrector algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号