首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The extraction and transport of Cd(II) and Pb(II) in two different membrane systems (SLM and PIM) using Kelex 100 as carrier was studied, proposing the corresponding chemical models of transport. A two-species transport model is proposed for Cd(II), according to solvent extraction (SX) data. Experimental SLM permeabilities are 9.7×10−5 m s−1, while measured PIM permeabilities are 5×10−5 m s−1. Values for the aqueous boundary layer thickness and for the diffusion coefficient of the metal cation-carrier complexes in the membrane phase were calculated from numerical fitting of experimental data using the proposed transport models. A highly selective Pb(II) separation was achieved in PIM systems based on the nature of the chemical equilibria involved in Cd(II) and Pb(II) membrane transport.  相似文献   

2.
The diffusion of ferrocene methanol in super-cooled aqueous solutions containing sucrose has been studied, using disk and cylindrical microelectrodes, over a wide viscosity range. The solution viscosity and the reduced temperature T/Tg (Tg being the glass transition temperature) were varied by changing the sucrose concentration and the temperature of the system. The voltammetric limiting current obtained with a disk microelectrode and the i(t) response on a cylindrical microelectrode after a potential step were used to determine diffusion coefficients from 7 × 10−6 cm2 s−1 down to 2 × 10−11 cm2 s−1. The electrochemical procedure described in this work allows a simple and accurate measurement of the dynamics of electroactive solutes in glass-forming liquids.  相似文献   

3.
The membrane aromatic recovery system (MARS) is a new membrane technology which recovers aromatic acids and bases. The first industrial installation has been operating at a Degussa site in the UK recovering cresols since 2002. The state of the art MARS technology employs a tubular silicone rubber membrane. However, this places some limitations on the process due to relatively low mass transfer rates and limited chemical resistance.In this paper, flat sheet composite membranes were investigated for application to the MARS process. In particular for recovery of compounds, such as 1,2-benzisothiazolin-3-one (BIT) which show low mass transfer rates through the current membrane. These composite membranes are comprised of a thin nonporous PDMS selective layer coated on a microporous support layer cast from polyacrylonitrile, polyvinylidene fluoride, polyetherimide or polyphenylenesulphone. The membranes have been characterised using SEM and gas permeation. The mass transfer of BIT through the composite membranes with no chemical reaction enhancement was an order of magnitude higher than through tubular silicone rubber membranes (10−7 m s−1 versus 10−8 m s−1). With chemical reaction enhancement, the mass transfer increased by another order of magnitude to 1.6 × 10−6 m s−1 for BIT through a PVDF supported composite membrane. Mass transfer through the composite membrane was described well using analysis based on the resistance in series theory with chemical reaction. However, when a high osmotic pressure was applied across the membrane (molarity  3 M), significant water transport occurred across the membrane.  相似文献   

4.
A novel poly(p-xylenolsulfonephthalein) modified glassy carbon electrode was prepared for the simultaneous determination of ascorbic acid (AA), epinephrine (EP) and uric acid (UA). Cyclic voltammetric, chronoamperometric, and differential pulse voltammetric methods were used to investigate the modified electrode for the electrocatalytic oxidation of EP, AA, and UA in aqueous solutions. The separation of the oxidation peak potentials for AA–EP and EP–UA was about 200 and 130 mV, respectively. The calibration curves obtained for AA, EP, and UA were in the ranges of 10–1343, 2–390, and 0.1–560 μmol L−1, respectively. The detection limits (S/N = 3) were 4, 0.1, and 0.08 μmol L−1 for AA, EP and UA, respectively. The diffusion coefficient and the catalytic rate constant for the oxidation of EP at the modified electrode were calculated as 1.40(±0.10) × 10−4 cm2 s−1 and 1.06 × 103 mol−1 L s−1, respectively. The present method was applied to the determination of EP in pharmaceutical and urine samples, AA in commercially available vitamin C tablet, and EP plus UA in urine samples.  相似文献   

5.
A new technique to prepare a palladium membrane for high-temperature hydrogen permeation was developed: Pd(C3H3)(C5H5) an organometallic precursor reacted with hydrogen at room temperature to decompose into Pd crystallites. This reaction together with sintering treatment under hydrogen and nitrogen in sequence resulted in the formation of dense films of pure palladium on the surface of the mesoporous stainless steel (SUS) support. Under H2 atmosphere the palladium membrane could be sintered at 823 K to form a skin layer inside the support pores. The hydrogen permeance was 5.16×10−2 cm3 cm−2 cm Hg−1 s−1 at 723 K. H2/N2 selectivity was 1600 at 723 K.  相似文献   

6.
The reaction of solvated electrons with baicalin in N2-saturated ethanol has been studied by pulse radiolysis. The results show that a solvated electron can add to baicalin and generate a baicalin radical anion with a maximum UV absorbance peak at 360 nm. Its molar extinction coefficient at this wavelength is 1.3×104 M−1 cm−1. The rate constant for the build-up of the baicalin radical anion is 1.3(±0.4)×1010 M−1 s−1. Decay of the radical anion is induced by a proton transfer reaction and a recombination reaction, which involves a pseudo-first-order reaction with rate constant 2.6(±0.4)×103 s−1 and a second-order reaction with rate constant 1.3(±0.2)×109 M−1 s−1. The effect of acetaldehyde on the decay of the baicalin radical anion was also investigated. Electron transfer between the baicalin radical anion and acetaldehyde was not observed, probably due to the low rate of electron transfer between the baicalin radical anion and acetaldehyde. Reactivity of the rutin, quercetin, baicalin and ethyl acrylate radical anions are also compared.  相似文献   

7.
This work studies the mechanism of active transport of silver(I) through an immobilized liquid membrane (ILM) containing thiourea derivatives having sulfur as donor atoms, namely (N-(N′,N′-diethyl thiocarbamoyl)N″-phenylbenzamidine (TCBA) and 1,6-diethylcarbamoyl imino)-1,6-diphenyl-2,5 dithiahexane (TCTH) dissolved in cumene as mobile carrier. An uphill transport model has been described and equations have been derived taking into account aqueous boundary layer diffusion and liquid membrane diffusion as simultaneous controlling factors. In the present model, various separate cases were discussed using carrier TCBA and TCTH considering the possibility of each chemical species and evaluating diffusional membrane resistance for lower and higher concentration of extractants. The diffusion coefficients were observed to decrease with increase in the extractant concentration ranging from 1.0×10−7 to 3.5×10−6 mol cm−3. Plotting [Ag]0−[Ag]t vs. time resulted in a slope of [L0]AoV taking into account both complexing species, AgL and AgNO3L, in the membrane. The validity of this model was evaluated with experimental data and found to be well in agreement with theoretical values. The mass transfer coefficient (Δ−1a), the diffusion coefficient of the metal carrier species (Do) and the thickness of the aqueous boundary layer were calculated from the proposed model for TCBA and TCTH. The mathematical equation was derived to correlate the permeability flux with support characteristics such as porosity, tortuosity and thickness.  相似文献   

8.
The photonic and electrochemical properties of a novel Ru–phenolate based metallopolymer are reported. The complex undergoes a ruthenium based reversible oxidation at approximately +0.400 V and irreversible box ligand oxidation at +0.800 V vs. Ag/AgCl. Oxidation of thin films in aqueous electrolyte at +0.500 V reversibly switches the colour from wine red to light green and a red orange colour is observed for mixed redox composition. In contrast, oxidation at potentials more positive than +1.500 V shows no visible colour change but produces a change in the near infra-red region. To determine the electrochromic switching rate and to identify the rate determining step of the, scan rate dependent cyclic voltammetry was performed under semi-infinite linear diffusion conditions in aqueous lithium perchlorate. These data reveal that the homogeneous charge transport diffusion coefficient, DCT, is 3.6 ± 0.2 × 10−13 cm2 s−1, i.e., under these conditions it takes approximately 90 s to fully oxidise a 100 nm thick film.  相似文献   

9.
Polyethylene terephthalte (PET) was irradiated with carbon (70 MeV) and copper (120 MeV) ions to analyze the induced modifications with respect to optical, structural and thermal properties. In the present investigation, the fluence for carbon irradiation was varied from 1×1011 to 1×1014 ions cm−2, while that for copper beam was kept in the range of 1×1011 to 1×1013 ions cm−2. UV–vis, FTIR, XRD and DSC techniques were utilized to study the induced changes. The analysis of UV–vis absorption studies reveals that there is decrease of optical energy gap up to 10% on carbon ion irradiation (at 1×1014 ions cm−2), whereas the copper beam (at 1×1013 ions cm−2) leads to a decrease of 49%. FTIR analysis indicated the formation of alkyne end groups along with the overall degradation of polymer with copper ion irradiation. X-ray diffraction analysis revealed that the semi-crystalline PET losses its crystallinity on swift ion irradiation. It was found that the carbon beam (1×1014 ions cm−2) decreased the crystallite size by 16% whereas this decrease is of 12% in case of the copper ion irradiated PET at 1×1013 ions cm−2. The loss in crystallinity on irradiation has been supported by DSC thermograms.  相似文献   

10.
Chemical vapor deposition (CVD) was used to modify 4 nm pore, sol–gel derived, γ-alumina membranes supported on macroporous α-alumina. Aluminum oxide was deposited in the pores of the γ-alumina membrane by alternating additions of trimethylaluminum (TMA) and water vapor. By reducing the pore size, the permeance of non-condensable gasses was reduced much more than the permeance of condensable gasses due to capillary condensation or preference adsorption of water vapor. The modified membrane that exhibited the best separation properties had a water vapor permeance ranging from 1.5×10−6 to 3.0×10−7 mol/m2 s Pa, an oxygen permeance ranging from 1.7×10−7 to 1.5×10−9 mol/m2 s Pa, and a separation factor as high as 140 at room temperature. The microstructure of the pores contained some irregularities which were attributed to an atomic layer CVD (ALCVD) mechanism modified by homogeneous reactions. The effect of the modified ALCVD was higher permeances than would be expected. P-type zeolite membranes were also made and found to have similar separation properties to the more heavily modified γ-alumina membranes.  相似文献   

11.
We prepared polyaniline-poly(4-styrenesulfonate) nanoparticles (PANI/PSS-NPs) by chemical oxidation polymerization in aqueous solution. We investigated the potential of the PANI/PSS-NPs to be used as an anode electrode for electrochromic devices and the effect of Li+ insertion (or deinsertion) kinetics and diffusion of Li+. A uniform electrochromic layer of PANI/PSS-NPs with a size of ca. 28 nm could be obtained by a solution process, specifically spin coating. The PANI/PSS-NPs film has a high Li+ diffusion coefficient (~7.7 × 10?9 cm2 s?1) and low charge transfer resistance (~99 Ω), which result in its having a fast electrochromic response time (coloring time <1.7 s, bleaching time <2.4 s), and high coloration efficiency (>108 cm2 C?1).  相似文献   

12.
Dimethylsulfoxide (DMSO)–Br complexes were generated by pulse radiolysis of DMSO/bromomethane mixtures and the formation mechanism and spectral characteristics of the formed complexes were investigated in detail. The rate constant for the reaction of bromine atoms with DMSO and the extinction coefficient of the complex were obtained to be 4.6×109 M−1 s−1 and 6300 M−1 cm−1 at the absorption maximum of 430 nm. Rate constants for the reaction of bromine atoms with a series of alcohols were determined in CBrCl3 solutions applying a competitive kinetic method using the DMSO–Br complex as the reference system. The obtained rate constants were ∼108 M−1 s−1, one or two orders larger than those reported for highly polar solvents. Rate constants of DMSO–Br complexes with alcohols were determined to be ∼ 107 M−1 s−1. A comparison of the reactivities of Br atoms and DMSO–Br complexes with those of chlorine atoms and chlorine atom complexes which are ascribed to hydrogen abstracting reactants strongly indicates that hydrogen abstraction from alcohols is not the rate determining step in the case of Br atoms and DMSO–Br complexes.  相似文献   

13.
Cadmium has been extracted as a chloride complex through a flat-sheet-supported liquid membrane (SLM), using the tertiary amine Alamine 304-1 (mainly trilaurylamine or TLA) in kerosine.The typical permeability of the membrane was 1.1×10−6 m s−1. The rate limiting step is diffusion through the membrane. The cadmium loading of the extractant at the feed–membrane interface is high. Trilaurylammonium chloride crystallizes at the surface of the membrane above 0.2 M TLA. This salt blocks the pores and lowers the extraction rate up to a factor of 3. Apart from this blocking effect, the permeability through the membrane is described well with the presented model, using physically realistic parameter values. When the precipitation can be minimized, the system has good potentials for the extraction of cadmium chloride complexes.  相似文献   

14.
Tetrahydrofuran (THF) is a strong aprotic solvent, commonly used in the pharmaceuticals industry due to its broad solvency for both polar and non-polar compounds. THF and water form a homogeneous azeotrope at 5.3 wt.% water thus simple distillation is not feasible to dehydrate THF below this concentration. Pervaporation offers a solution since it is not governed by vapour–liquid equilibria. However many polymer-based pervaporation membranes are cast utilizing THF as the casting solvent and so these membranes have a tendency to swell excessively in its presence. This results in poor separation performance and poor long-term stability and thus renders these membranes unsuitable for THF dehydration.In this study, a new membrane available from CM Celfa, CMC-VP-31 has been tested for the dehydration of THF. The membrane shows excellent performance when dehydrating THF with a flux of over 4 kg m−2 h−1 when dehydrating THF containing 10 wt.% water at 55 °C dropping to 0.12 kg m−2 h−1 at a water content of 0.3 wt.%. The permeances of water and THF in the membrane were calculated to be 11.76 × 10−6 and 7.36 × 10−8 mol m−2 s−1 Pa−1, respectively, at 25 °C and found to decrease in the membrane with increasing temperature to values of 6.71 × 10−6 and 1.63 × 10−8 mol m−2 s−1 Pa−1 at 55 °C. The flux and separation factor were both found to increase with an increase in temperature thus favouring the operation of CMC-VP-31 at high temperatures to optimize separation performance.  相似文献   

15.
The exposure to gamma-irradiation pretreatment increases cell wall permeabilization, resulting in loss of turgor pressure, which led to the increase of extractability of betanin from red beetroot. The degree of extraction of betanin was investigated using gamma irradiation as a pretreatment prior to the solid–liquid extraction process and compared with control beetroot samples. The beetroot subjected to different doses of gamma irradiation (2.5, 5.0, 7.5, 10.0 kGy) and control was dipped in an acetic acid medium (1% v/v) to extract the betanin. The diffusion coefficients for betanin as well as ionic component were estimated considering Fickian diffusion. The results indicated an increase in the diffusion coefficient of betanin (0.302×10−9–0.463×10−9 m2/s) and ionic component (0.248×10−9–0.453×10−9 m2/s) as the dose rate increased (from 2.5 to 10.0 kGy). The degradation constant was found to increase (0.050–0.079 min−1) with an increase gamma-irradiation doses (2.5–10.0 kGy), indicating lower stability of the betanin as compared to control sample at 65 °C.  相似文献   

16.
《Comptes Rendus Chimie》2014,17(7-8):801-807
Imidazole-2-carboxaldehyde (IC) reactivity in the presence of halide anions (Cl, Br, I) has been studied by laser flash photolysis in aqueous solution at room temperature. The absorption spectrum of the triplet state of IC has been measured with a maximum absorption at 330 nm and a weaker absorption band around 650 nm. Iodide anions proved to be efficient quenchers of the triplet state IC, with a rate coefficient kq of (5.33 ± 0.25) × 109 M−1 s−1. Quenching by bromide and chloride anions was less efficient, with kq values of (6.27 ± 0.53) × 106 M−1 s−1 and (1.31 ± 0.16) × 105 M−1 s−1, respectively. The halide (X) quenches the triplet state; the resulting transient absorption feature matches that of the corresponding radical anion (X2). We suggest that this type of quenching reactions is a driving force of oxidation reactions in the oceanic surface microlayer (SML) and a source of halogen atoms in the atmosphere.  相似文献   

17.
Low-density polyethylene (LDPE) was irradiated with proton (3 MeV) and copper (120 MeV) ions to analyze the induced modifications with respect to optical and structural properties. In the present investigation, the fluence for proton irradiation was varied up to 2×1015 protons cm−2, while that for copper beam was kept in the range of 1×101 to 1×1013 ions cm−2 to study the swift heavy ion-induced modifications in LDPE. Ultraviolet–visible (UV–vis), FTIR and X-ray diffraction (XRD) techniques were utilized to study the induced changes. The analysis of UV–vis absorption studies reveals that there is decrease of optical energy gap up to 43% on proton irradiation (at 2×1015 ions cm−2), whereas the copper beam (at 1×1013 ions cm−2) leads to a decrease of 51%. FTIR analysis indicated the presence of unsaturations due to vinyl end groups in the irradiated sample. The formation of OH and CO groups has also been observed. XRD analysis revealed that the semi-crystalline LDPE losses its crystallinity on swift ion irradiation. It was found that the proton beam (2×1015 ions cm−2) decreased the crystallite size by 23% whereas this decrease is of 31% in case of the copper ion-irradiated LDPE at 1×1013 ions cm−2.  相似文献   

18.
This work reports on a novel chitosan–hematite nanotubes composite film on a gold foil by a simple one-step electrodeposition method. The hybrid chitosan–hematite nanotubes (Chi–HeNTs) film exhibits strong electrocatalytic reduction activity for H2O2. Interestingly, two electrocatalytic reduction peaks are observed at −0.24 and −0.56 V (vs SCE), respectively, one controlled by surface wave and the other controlled by diffusion process. The Chi–HeNTs/Au electrode shows a linear response to H2O2 concentration ranging from 1 × 10−6 to 1.6 × 10−5 mol L−1 with a detection limit of 5 × 10−8 mol L−1 and a sensitivity as high as 1859 μA μM−1 cm−2.  相似文献   

19.
It is an effective way to substitute air to methane in the anode of solid oxide electrolysis cells to reduce the electrical consumption for simultaneously producing H2 and high-quality syngas. In the methane assisted mode, the thermodynamic properties and Nernst potential exhibit one order of magnitude reduction of applied voltage to produce comparable electrolysis current. Ni catalysts are infiltrated to the SFM-SDC anode to improve the catalytic properties for methane assisted steam electrolysis. After Ni infiltration, surface oxygen exchange coefficient is effectively accelerated from 3.03 × 10 5 to 2.20 × 10 4 cm s 1, and the current density is significantly enhanced from − 487 to − 1022 mA cm 2 at 850 °C and 0.5 V.  相似文献   

20.
We report the preparation of phosphoric acid doped poly(2,5-benzimidazole) (ABPBI) membranes for PEMFC by simultaneously doping and casting from a poly(2,5-benzimidazole)/phosphoric acid/methanesulfonic acid (MSA) solution. The evaporation of MSA yields a very homogeneous membrane having a better controlled composition, avoiding the use of solvent-intensive procedures. Membranes have been prepared with contents of up to 3.0H3PO4 molecules per ABPBI repeating unit. These membranes achieve a maximum conductivity of 1.5 × 10−2 S cm−1 at temperatures as high as 180 °C in dry conditions. These ABPBI membranes are more conveniently prepared than those conventionally formed and doped in separate steps while featuring comparable conductivities (ABPBI × 2.7H3PO4 prepared by the soaking method showed a conductivity of 2.5 × 10−2 S cm−1 at 180 °C in dry conditions).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号