共查询到20条相似文献,搜索用时 15 毫秒
1.
Mahmoud Reza Sohrabi Zahra Matbouie Ali Akbar Asgharinezhad Ali Dehghani 《Mikrochimica acta》2013,180(7-8):589-597
We describe a novel magnetic metal-organic framework (MOF) for the preconcentration of Cd(II) and Pb(II) ions. The MOF was prepared from the Fe3O4-pyridine conjugate and the copper(II) complex of trimesic acid. The MOF was characterized by IR spectroscopy, elemental analysis, SEM and XRD. A Box-Behnken design through response surface methodology and experimental design was used to identify the optimal parameters for preconcentration. Extraction time, amount of magnetic MOF and pH value were found to be critical factors for uptake, while type, volume, concentration of eluent, and elution time are critical in the elution step. The ions were then determined by FAAS. The limits of detection are 0.2 and 1.1 μg?L?1 for Cd(II), and Pb(II) ions, respectively, relative standard deviations are <4.5% (for five replicates at 50 μg?L?1 of Cd(II) and Pb(II) ions), and the enrichment capacity of the MOF is at around 190 mg?g?1 for both ions which is higher than the conventional Fe3O4-pyridine material. The magnetic MOF was successfully applied to the rapid extraction of trace quantities of Cd(II) and Pb(II) ions in fish, sediment, and water samples. Figure
Schematic illustration of synthesized magnetic MOF-pyridine nanocomposite 相似文献
2.
Transport rate of metal cations can be explained by the size of substituents, namely larger substituents such as 7 and 8 prefer Pb(II) cations. The bis-PNP-lariat ethers remove Zn(II), Cd(II) and Pb(II) more efficiently than simple PNP-lariat ethers. The increase of linker length in the bis-PNP-lariat ether molecules lowers the metal cations’ transport rate. In addition, the synergetic effect for lead(II) transport across polymer inclusion membrane (PIM) with PNP-lariat ether 9 and DNNS was using PNP-lariat ethers—carriers 1 and 2 in a PIM system, Zn(II) and Cd(II) were transported with low selectivity from acidic aqueous source phase solutions. The ether 3 used to transport Zn(II) and Cd(II) cations from aqueous phase at pH 5.0 into hydrochloric aqueous solution shows high selectivity of Cd/Zn, but small efficiency of process. 相似文献
3.
Solid-phase extraction (SPE) method for preconcentration and determination of Cd(II), Pb(II), Co(II), Ni(II), and Cu(II) aqueous
samples by inductively coupled plasma optical emission spectrometry is described. The preconcentration of analytes is accomplished
by retention of their chelates with 1.10-phenanthroline in aqueous solution on a solid phase containing carboxylic acid (COOH)
bonded to silica gel in a column. The limits of detection values (defined as “3s” where “s” is standard deviation of the blank
determination) are 3.6 μg/L for Cd(II), 17.5 μg/L for Pb(II), 3.1 μg/L for Co(II), 2.1 μg/L for Ni(II), and 4.4 μg/L for Cu(II)
and corresponding limit of quantification (6s) values are 7.2, 35, 6.2, 4.2 and 8.8 μg/L, respectively. As a result, a simple
method was elaborated for the group concentration and determination of the above mentioned metals in reference material and
in samples of plant material.
The article is published in the original. 相似文献
4.
Two dicarboxylated ethynylarenes were prepared efficiently from condensation of 1,3-bis(3-aminophenylethynyl)benzene with 2 equiv of either succinic anhydride or glutaric anhydride. These compounds behave as fluorescent chemosensors selective for Cd(II), Pb(II), and Zn(II) cations under buffered aqueous conditions, with analyte binding observed as bathochromically shifted, intensified fluorescence. It was noteworthy that the fluorescence responses varied significantly with buffer identity. A conformational restriction mechanism involving reversible interactions between the fluorophore, metal cation, and buffer itself is proposed. 相似文献
5.
The determination of Pb(II) and Cd(II) in different sample matrices, including drinking water, distilled spirits and fruit wine, was carried out by flame atomic absorption spectrometry (FAAS) after pre-concentration using homogeneous liquid-liquid extraction (HLLE). First, the HLLE method was optimised with lead diethyldithiocarbamate (Pb-DDTC) complex which was extracted with a perfluorooctanoate anion (PFOA?) dissolved in lithium hydroxide under acidic conditions. The optimum extraction conditions, using 0.01 M DDTC, 0.05 M PFOA?, 3 M HCl and 1 mL of 30 vol. % acetone, were obtained. The Pb-DDTC complex in the nitric acid digest of the samples (50–150 mL) was extracted quantitatively into a drop of 100 μL of sediment phase. The sediment phase dissolved in 1 vol. % HNO3 with at least 3–5 mL of the final volume was then determined by FAAS, affording a pre-concentration factor of 10–50. Hence, the HLLE method afforded an increase in both sensitivity and selectivity for the metal determination by conventional FAAS, resulting in ultra-trace level detection of Pb(II) in all samples analysed (drinking water, 9.2–23 ng mL?1; distilled spirits, 23–50 ng mL?1; fruit wine, 24–53 ng mL?1). In addition, the proposed method could successfully be applied to Cd(II) determination in these samples. 相似文献
6.
Xiang Ting Zhang ZuLei Liu HaiQing Yin ZhengZhi Li Lei Liu XiaoMing 《中国科学:化学(英文版)》2013,56(5):567-575
Science China Chemistry - Nanofiber membranes from the composite of cellulose acetate/polyvinylpyrrolidone were prepared using electrospinning technique. After treated with water and alcoholic KOH... 相似文献
7.
Transport characterisation of a PIM system used for the extraction of Pb(II) using d2ehpa as carrier
German Salazar-Alvarez Ana Nelly Bautista-Flores Eduardo Rodríguez de San Miguel Mamoun Muhammed Josefina de Gyves 《Journal of membrane science》2005,250(1-2):247-257
The facilitated transport of lead(II) through polymeric inclusion membranes consisting of cellulose triacetate as polymeric support, bis-(2-ethylhexyl)-phosphoric acid (d2ehpa) as carrier, and tris-(2-butoxyethyl)phosphate as plasticiser (tbep), is investigated. The influence of some of the aqueous and membrane components on the permeability of Pb(II) was studied. The maximum flux obtained with these membranes is 3.5×10−6 mol m−2 s−1, which is of the same order of magnitude of those reported for supported liquid membranes and is in the upper range of those reported for polymeric inclusion membranes. Aqueous and membranes resistances were determined from a model that describes the transport mechanism across the membranes using the stoichiometric relationship and the extraction equilibrium constant value of 6.2×10−4 determined independently by solid–liquid extraction. An activation energy of 11 kJ mol−1 was also determined for Pb(II) migration, which suggest that the transport of Pb(II) is controlled by a membrane diffusion mechanism. Membrane characterisation was performed using several techniques including atomic force microscopy, scanning electron microscopy coupled with energy-dispersive spectroscopy, and thermal analysis. 相似文献
8.
The synthesis of three lipophilic n-dodecyl tetraazacycloalkanes is described. Extraction of Cu(II), Cd(II) and Pb(II) is related. 相似文献
9.
LIN Qi LIN HongMei ZHANG YuanHui RONG MingCong KE HuiXian TANG XinHua CHEN Xi 《中国科学:化学(英文版)》2013,56(12):1749-1756
In this work,we reported a simultaneous determination approach for Pb(II),Cd(II)and Zn(II)atμg L 1concentration levels using differential pulse stripping voltammetry on a bismuth film electrode(BiFE).The BiFE could be prepared in situ when the sample solution contained a suitable amount of Bi(NO)3,and its analytical performance was evaluated for the simultaneous determination of Pb(II),Cd(II)and Zn(II)in solutions.The determination limits were found to be 0.19μg L 1for Zn(II),and0.28μg L 1for Pb(II)and Cd(II),with a preconcentration time of 300 s.The BiFE approach was successfully applied to determine Pb(II),Cd(II)and Zn(II)in tea leaf and infusion samples,and the results were in agreement with those obtained using an atomic absorption spectrometry approach.Without Hg usage,the in situ preparation for BiFE supplied a green and acceptability sensitive method for the determination of the heavy metal ions. 相似文献
10.
11.
The extraction of HC1 by the secondary amine (B), known as Amberlite LA-2, dissolved in 1,2-dichloroethane and the aggregation of BHC1 have been studied by using a two-phase potentiometric titration technique. The experimental data, treated by a general minimizing program, indicate dimerization: 2 BHClright harpoon over left harpoon(BHCl)(2). The equilibrium constant of this reaction was calculated. The extraction of ZnCl(2), CdCl(2) and PbCl(2) from 0.2,0.5, 1.0 and 2.0M HCl, and 1MNaCl by Amberlite LA-2 hydrochloride (BHCl), dissolved in 1,2-dichloroethane, has been studied. The complexes (BHCl)(2)ZnCl(2), (BHCl)(2)CdCl(2) and (BHCl)(2)PbCl(2) were found to exist, irrespective of the composition of the aqueous phase. The formation constant of the first was calculated. 相似文献
12.
The separation of Cd(II) and Ni(II) ions was studied in an aqueous sulphate medium using supported liquid membrane (SLM). D2EHPA/M2EHPA was used as a mobile carrier, microporous hydrophobic PTFE film was used as a solid support for the liquid membrane, and the strip phase was sulphuric acid. The effects of different parameters such as feed concentration, carrier concentration, feed phase pH, and strip phase pH on the separation factor and flux of Cd(II) and Ni(II) ions were studied. The optimum values obtained to achieve the maximum flux were 5.0 for feed pH, 40 vol. % for D2EHPA/M2EHPA concentration in the membrane phase, 0.5 for strip pH, and 0.012 mass % for feed concentration. Under these optimum conditions, the flux values of Cd(II) and Ni(II) were 15.7 × 10?7 kg m?2 s?1 and 2.6 × 10?7 kg m?2 s?1, respectively. The separation factors of Cd(II) over Ni(II) were studied under different experimental conditions. At a carrier concentration of 10 vol. % and feed concentration of 0.012 mass %, the maximum value of 185.1 was obtained for the separation factor of Cd(II) over Ni(II). After 24 h, the percentages of the extracted Cd(II) and Ni(II) were 83.3 % and 0.45 %, respectively. 相似文献
13.
A method for heavy metal monitoring using spectrophotometric detection is presented. Traces of Cu(II), Pb(II) and Cd(II) at the low microg l(-1) level can be determined simultaneously after both selective removal of metal interferences and preconcentration using 'extraction chromatographic resins'. Lewatit TP807'84, which contains di(2,4,4-trimethylpentyl)phosphinic acid as active component, was used as solid adsorbent. Two minicolumns containing this resin were used: one at pH 3.2 for the removal of interferences, such as Zn(II) and Fe(III), and the other at pH 5.5 for the selective preconcentration of the target analytes. Spectrophotometric determination used FIA methodology with sulfarsazene as chromogenic reagent and partial least-squares multivariate calibration. The method was successfully applied to the analysis of surface waters from the Llobregat river and ground water samples from wells in the Guadiamar basin. Accuracy, expressed in terms of recoveries, was in the range 80-120% and relative standard deviations were below 10%. 相似文献
14.
We report for the first time the synthesis of bismuth-modified (3-mercaptopropyl) trimethoxysilane (MPTMS) and its application for the determination of lead and cadmium by anodic stripping voltammetry. Xerogels made from bismuth-modified MPTMS and mixtures of it with tetraethoxysilane, under basic conditions (NH3·H2O), were characterized with scanning electron microscopy, energy dispersive spectroscopy, infrared spectroscopy and electrochemical methods. Bismuth-modified xerogels were mixed with 1.5% (v/v) Nafion in ethanol and applied on glassy carbon electrodes. During the electrolytic reductive deposition step, the bismuth compound on the electrode surface was reduced to metallic bismuth. The target metal cations were simultaneously reduced to the respective metals and were preconcentrated on the electrode surface by forming an alloy with bismuth. Then, an anodic voltammetric scan was applied in which the metals were oxidized and stripped back into the solution; the voltammogram was recorded and the stripping peak heights were related to the concentration of Cd(II) and Pb(II) ions in the sample. Various key parameters were investigated in detail and optimized. The effect of potential interferences was also examined. Under optimum conditions and for preconcentration period of 4 min, the 3σ limit of detection was 1.3 μg L−1 for Pb(II) and 0.37 μg L−1 for Cd(II), while the reproducibility of the method was 4.2% for lead (n = 5, 10.36 μg L−1 Pb(II)) and 3.9% for cadmium (n = 5, 5.62 μg L−1 Cd(II)). Finally, the sensors were applied to the determination of Cd(II) and Pb(II) ions in water samples. 相似文献
15.
Little spectroscopic evidence exists in the literature describing the surface complexation of cadmium (Cd) and lead (Pb) on kaolinite, the dominant clay mineral present in highly weathered soils of tropical and humid climates. X-ray absorption fine structure (XAFS) spectroscopy data at the Cd K and Pb L(III) edges were collected on Cd- and Pb-sorbed kaolinite samples and compared to a suite of reference materials including Pb and Cd sorbed on amorphous (am-)gibbsite. Cadmium formed dominantly (>75%) outer sphere complexes on kaolinite and a small fraction of CdOHCl complexes. In contrast Cd adsorbed as an inner sphere complex on gibbsite, suggesting that the Si tetrahedral sheet hindered Cd sorption to the Al octahedral sheet on kaolinite. Lead formed polymeric complexes, which bonded to kaolinite via edge sharing with surface Al octahedra. Two distinct Pb-Al edge-sharing distances on am-gibbsite, as opposed to one on kaolinite, suggested a similar steric hindrance effect for the surface complexation of polymeric Pb complexes on kaolinite. The results of this study show that the Si tetrahedral sheet limited the surface complexation of Cd and Pb on kaolinite, elevating kaolinite's permanent negative charge properties in retaining these heavy metals at its surface. 相似文献
16.
Thermal decomposition of Bi(SCN)3, Cd(SCN)2, Pb(SCN)2 and Cu(SCN)2 has been studied. The thermal analysis curves and the diffraction patterns of the solid intermediate and final products of the pyrolysis are presented. The gaseous products of the decomposition (SO2 and CO2) were detected and quantitatively determined. Thermal, X-ray and chemical analyses have been used to establish the nature of the reactions occurring at each stage in the decomposition.This revised version was published online in November 2005 with corrections to the Cover Date. 相似文献
17.
18.
《Solid State Sciences》2012,14(2):202-210
Waste materials from industries such as food processing may act as cost effective and efficient biosorbents to remove toxic contaminants from wastewater. This study aimed to establish an optimized condition and closed loop application of processed orange peel for metals removal. A comparative study of the adsorption capacity of the chemically modified orange peel was performed against environmentally problematic metal ions, namely, Cd2+, Cu2+ and Pb2+, from aqueous solutions. Chemically modified orange peel (MOP) showed a significantly higher metal uptake capacity compared to original orange peel (OP). Fourier Transform Infrared (FTIR) Spectra of peel showed that the carboxylic group peak shifted from 1637 to 1644 cm−1 after Pb (II) ions binding, indicated the involvement of carboxyl groups in Pb(II) ions binding. The metals uptake by MOP was rapid and the equilibrium time was 30 min at constant temperature and pH. Sorption kinetics followed a second-order model. The mechanism of metal sorption by MOP gave good fits for Freundlich and Langmuir models. Desorption of metals and regeneration of the biosorbent was attained simultaneously by acid elution. Even after four cycles of adsorption-elution, the adsorption capacity was regained completely and adsorption efficiency of metal was maintained at around 90%. 相似文献
19.
Jiaqi Yin Guanglei Chu Yue Wang Hongguo Zhai Bao Wang Xia Sun Yemin Guo Yanyan Zhang 《Electroanalysis》2021,33(5):1370-1377
A sensing platform was developed based on the molybdenum disulfide-reduced graphene oxide (MoS2-RGO). The flower-like MoS2-RGO nanocomposite had a large number of active sites such as oxygen-containing groups and highly reactive sulfur that contributed to the adsorption and preconcentration of heavy metal ions (HMIs). MoS2-RGO was synthesized by one-step reduction method. Under optimized conditions, the limits of detection (LODs) for Pb(II) and Cd(II) was 0.13 μg/L and 0.59 μg/L with a linear range of 4.1–207.2 μg/L and 2.2–112.4 μg/L, respectively. The modified sensors had been successfully applied to detect Pb(II) and Cd(II) in three kinds of edible mushrooms. 相似文献
20.
Poly(vinyl chloride) membrane electrode, that is highly selective and sensitive to Cu(II) ions, was developed by using 2,2'-dithiodianiline and dibutyl phthalate as carrier and plasticizer, respectively. The electrode exhibits good potentiometric response for Cu(II) over a wide concentration range (5.0x10(-2)-7.0x10(-7) mol l(-1)) with Nernstian slope of 30+/-1 mV per decade. The response time of the electrode is 10 s and it has been used for a period of one month and exhibits good selectivity towards Cu(2+) in comparison to alkali, alkaline earth, transition and heavy metal ions, with no interference caused by Pb(2+), Cd(2+) and Fe(+2) which are known to interfere with many other copper electrodes. 相似文献