首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用二维PIC粒子模拟程序研究了超短超强激光脉冲与柱腔靶相互作用产生的表面超热电子加速现象。采用光强为1021 W/cm2量级的超高斯激光脉冲掠入射进入柱腔靶,在靶的内壁上观察到了GeV量级的表面超热电子。超热电子束被准静态的电场和磁场约束在内壁表面附近,保证了电子束的准直性,发散角仅为1.6°;并且由于超热电子束在纵向激光电场中加速了mm级的距离,激光到高能电子(100 MeV)的转换效率达到了26.6%。另外,通过多参数模拟和理论解析讨论了激光的光强以及横向空间分布对这种表面超热电子加速的影响。  相似文献   

2.
For the interpretation of experiments for acceleration of electrons at interaction up to nearly GeV energy in laser produced plasmas, we present a new model using interaction magnetic fields. In addition to the ponderomotive acceleration of highly relativistic electrons at the interaction of very short and very intense laser pulses, a further acceleration is derived from the interaction of these electron beams with the spontaneous magnetic fields of about 100 MG. This additional acceleration is the result of a laser-magnetic resonance acceleration (LMRA) around the peak of the azimuthal magnetic field. This causes the electrons to gain energy within a laser period. Using a Gaussian laser pulse, the LMRA acceleration of the electrons depends on the laser polarization. Since this is in the resonance regime, the strong magnetic fields affect the electron acceleration considerably. The mechanism results in good collimated high energetic electrons propagating along the center axis of the laser beam as has been observed by experiments and is reproduced by our numerical simulations. PACS 41.75.Jv; 52.38.Kd; 52.65.Cc  相似文献   

3.
The effect of ultrastrong magnetic fields generated in a relativistic-intensity subpicosecond laser plasma on the acceleration of fast electrons was studied. It is shown that resonance electrons can continuously accumulate energy from the circularly polarized laser field in the presence of a longitudinal magnetic field. For the linear polarization and a transverse magnetic field, energy accumulation has a pulse-periodic character, and the electron trajectories correspond to electron rotation in the Larmor orbit in a quasi-stationary magnetic field, while the energy strongly oscillates. In both cases, electron energy may attain values higher than 100 MeV for intensities of 1020 W/cm2.  相似文献   

4.
Studies of phenomena accompanying the interaction of superstrong electromagnetic fields with matter, in particular, the generation of an electron–positron plasma, acceleration of electrons and ions, and the generation of hard electromagnetic radiation are briefly reviewed. The possibility of using thin films to initiate quantum electrodynamics cascades in the field of converging laser pulses is analyzed. A model is developed to describe the formation of a plasma cavity behind a laser pulse in the transversely inhomogeneous plasma and the generation of betatron radiation by electrons accelerated in this cavity. Features of the generation of gamma radiation, as well as the effect of quantum electrodynamics effects on the acceleration of ions, at the interaction of intense laser pulses with solid targets are studied.  相似文献   

5.
We suggest a novel method for the injection of electrons into the acceleration phase of particle accelerators, producing low-emittance beams appropriate even for the demanding high-energy linear collider specifications. We discuss the injection mechanism into the acceleration phase of the wakefield in a plasma behind a high-intensity laser pulse, which takes advantage of the laser polarization and focusing. The scheme uses the structurally stable regime of transverse wakewave breaking, when the electron trajectory self-intersection leads to the formation of a flat electron bunch. As shown in three-dimensional particle-in-cell simulations of the interaction of a laser pulse elongated in the transverse direction with an underdense plasma, the electrons injected via the transverse wakewave breaking and accelerated by the wakewave perform betatron oscillations with different amplitudes and frequencies along the two transverse coordinates. The polarization and focusing geometry lead to a way to produce relativistic electron bunches with an asymmetric emittance (flat beam). An approach for generating flat laser-accelerated ion beams is briefly discussed. The text was submitted by the authors in English.  相似文献   

6.
A novel approach for the generation of ultrabright attosecond electron bunches is proposed, based on acceleration in vacuum, by a short laser pulse. The laser-pulse profile is tailored such that the electrons are both focused and accelerated by the ponderomotive force of the light. Using time-averaged equations of motion, analytical criteria for optimal regime of acceleration are found. It is shown that for realistic laser parameters, a beam with up to 10(6) particles and normalized transverse and longitudinal emittances <10(-8) m can be produced.  相似文献   

7.
张蕾  董全力  王首钧  盛政明  张杰 《中国物理 B》2010,19(7):78701-078701
Quasistatic magnetic fields generated by nonrelativistic intense linearly polarized (LP) and circularly polarized (CP) laser pulses in an initially uniform underdense plasma in the collision-dominated limit are investigated analytically. Using a selfconsistent analytical model, we perform a detailed derivation of quasistatic magnetic fields in the laser pulse envelope in the collision-dominated limit to obtain exact analytical expressions for magnetic fields and discuss the dependence of magnetic fields on laser and plasma parameters. Equations for quasistatic magnetic fields including both axial component Bz and the azimuthal one Bθ are derived simultaneously from such a selfconsistent model. The dependence of quasistatic magnetic field on incident laser intensity, transverse focused radius of laser pulse, electron density and electron temperature is discussed.  相似文献   

8.
Direct electron acceleration by highly focused ultrahigh-power laser pulses of radial polarization in the ultrarelativistic mode was studied. The mode at which the focusing spot size appears of the same order as the laser radiation wavelength was considered. Electromagnetic fields were calculated using exact Stratton-Chu diffraction integrals. Calculations showed that, as for the case of linear polarization, too sharp focusing (in the diffraction limit) is not optimum for electron acceleration, despite the strong axial field namely in the case of a submicrometer laser spot. At the same time, the case of moderate focusing is more attractive for electron acceleration.  相似文献   

9.
沈众辰  陈民  张国博  罗辑  翁苏明  远晓辉  刘峰  盛政明 《中国物理 B》2017,26(11):115204-115204
By using three-dimensional particle-in-cell simulations, externally injected electron beam acceleration and radiation in donut-like wake fields driven by a Laguerre-Gaussian pulse are investigated. Studies show that in the acceleration process the total charge and azimuthal momenta of electrons can be stably maintained at a distance of a few hundreds of micrometers. Electrons experience low-frequency spiral rotation and high-frequency betatron oscillation, which leads to a synchrotron-like radiation. The radiation spectrum is mainly determined by the betatron motion of electrons. The far field distribution of radiation intensity shows axial symmetry due to the uniform transverse injection and spiral rotation of electrons. Our studies suggest a new way to simultaneously generate hollow electron beam and radiation source from a compact laser plasma accelerator.  相似文献   

10.
P K Kaw  A Sen 《Pramana》1997,48(2):675-692
We discuss the nonlinear propagation of relativistically intense electromagnetic waves into collisionless plasmas with special emphasis on one dimensional plane wave solutions of the propagating, standing and modulated types. These solutions exhibit a rich variety of phenomena associated with relativistic electron mass variation and coupling between transverse electromagnetic and longitudinal fields. They have important applications to problems of laser propagation, self-focusing in overdense plasmas, particle and photon acceleration and to electromagnetic radiation around pulsars.  相似文献   

11.
We theoretically investigate the possibility of electron acceleration during the self-channeled propagation of laser radiation. We consider a new acceleration mechanism associated with the formation of an ion cloud in material (under the ponderomotive force of the laser radiation) that moves together with the laser pulse. We show that the quasi-stationary electric and magnetic fields generated by the moving ion cloud can lead to the acceleration of electrons up to energies of several dozen MeV and to the formation of an electron beam propagating forward coaxially with the laser pulse. The calculated angular distribution of the accelerated electrons is in satisfactory agreement with published experimental results.  相似文献   

12.
刘明伟  龚顺风  李劲  姜春蕾  张禹涛  周并举 《物理学报》2015,64(14):145201-145201
在低密等离子体通道中, 横向有质动力可以有效调制电子的横向振荡过程. 一方面, 横向有质动力可以向外推动电子, 增大电子横向振荡振幅, 减小失相率, 使电子获得能量增益; 另一方面, 横向有质动力也可以通过对失相率的非线性调制来降低失相率, 在电子横向振荡振幅很小的情况下导致激光直接加速. 横向有质动力调制的大小由等离子体密度、激光强度和束宽共同决定. 三维模型结果也证实可以通过参数放大实现激光直接加速, 弥补了准二维模型的局限性.  相似文献   

13.
李百文  IshiguroS  SkoricMM 《中国物理》2006,15(9):2046-2052
This paper shows that the standing, backward- and forward-accelerated large amplitude relativistic electromagnetic solitons induced by intense laser pulse in long underdense collisionless homogeneous plasmas can be observed by particle simulations. In addition to the inhomogeneity of the plasma density, the acceleration of the solitons also depends upon not only the laser amplitude but also the plasma length. The electromagnetic frequency of the solitons is between about half and one of the unperturbed electron plasma frequency. The electrostatic field inside the soliton has a one-cycle structure in space, while the transverse electric and magnetic fields have half-cycle and one-cycle structure respectively. Analytical estimates for the existence of the solitons and their electromagnetic frequencies qualitatively coincide with our simulation results.  相似文献   

14.
Zhou CT  He XT 《Optics letters》2007,32(16):2444-2446
The effects of target density on proton acceleration driven by an intense sub-ps laser pulse are investigated using two-dimensional hybrid particle-in-cell simulations. Results show that at higher density the target-normal-sheath acceleration (TNSA) is more effective than shock acceleration for protons from a plastic target. Furthermore a lower-density target is favorable to higher energy of the TNSA protons. Moreover, the longitudinal electric fields at the target surfaces may reveal typical inhomogeneous structures for a long acceleration time. The conversion efficiency of laser energy into particle (electron, proton, and C(+) ion) energy is found to increase with decreasing target density.  相似文献   

15.
We consider the interaction of high-intensity laser pulses with underdense plasmas and address the problem of the excitation of strong and stable wake plasma waves with regular electric fields to provide effective acceleration of charged particles over appreciably long distances. It is known that a relativistically strong laser pulse longer than the wavelength of plasma waves, propagating in a plasma is subject to self-modulation. This may result in a nonstationary behavior of the produced plasma wake field/particle dephasing, and reduced net acceleration. In this paper we present the results of 1(2/2)-D and 2(1/2)-D particle in cell (PIC) simulations which demonstrate that regular wake electric fields may be obtained by a properly shaped laser pulse (sharp steepening of its leading front). These results are relevant to the design of the 100 MeV laser wake field electron acceleration experiment that uses a terawatt picosecond CO2 laser and is under construction at the Brookhaven Accelerator Test Facility  相似文献   

16.
强场物理新进展--强激光在等离子体中加速电子的新机制   总被引:1,自引:0,他引:1  
盛政明  张杰 《物理》2003,32(1):16-18
相对论强激光与等离子体相互作用中高能电子的产生机制是近年来一直被广泛重视的课题,文章扼要介绍了其中主要的几种加速机制,并特别介绍了作者最近提出的电子在对撞激光场中的随机加速机制。  相似文献   

17.
李百文  郑春阳  宋敏  刘占军 《物理学报》2006,55(10):5325-5337
应用一维相对论电磁粒子模拟程序,详细研究了线性极化强激光入射到无碰撞稀疏密度长等离子体中引起的受激Raman散射、Raman级联散射、级联散射到光子凝聚、以及大振幅电磁孤立子的产生与加速. 通过研究发现:在适当的激光振幅和等离子体状态下,强的光子凝聚现象会导致大振幅电磁孤立子的产生,电磁孤立子可以以静止、向后以及向前加速的形式存在;在密度均匀的等离子体中,电磁孤立子的加速不仅依赖于激光振幅而且依赖于等离子体的长度;电磁孤立子的电磁频率大约为未扰动电子等离子体振荡频率的二分之一左右,孤立子内电磁场的电场具有半周期结构,相应电磁场的磁场以及静电场则具有一个完整的周期结构. 关键词: 粒子模拟 受激Raman散射 Raman级联散射 光子凝聚 电磁孤立子  相似文献   

18.
The dynamics and energy gain of an electron in the field of a transverse electric wave propagating inside an elliptical waveguide is analytically investigated by considering the existence of a helical magnet in which the field is perpendicular to the axis of the waveguide and rotating as a function of position along the magnet. Besides, by solving the relativistic momentum and energy equations, the deflection angle and the acceleration gradient of the electron in the waveguide are obtained. It is shown that the electron is deflected due to the field components of the transverse electric mode of this microwave, and at the same time, it is accelerated by these fields. Furthermore, the expressions of the acceleration gradient and deflection angle for an electron in the transverse electric mode inside the plasma elliptical waveguide without a static helical magnet are presented, which was injected initially along the propagation direction of the microwave. The results are graphically presented.  相似文献   

19.
The energy and trajectory of the electron, which is irradiated by a high-power laser pulse in a cylindrical plasma channel with a uniform positive charge and a uniform negative current, have been analyzed in terms of a single-electron model of direct laser acceleration. We find that the energy and trajectory of the electron strongly depend on the positive charge density, the negative current density, and the intensity of the laser pulse. The electron can be accelerated significantly only when the positive charge density, the negative current density, and the intensity of the laser pulse are in suitable ranges due to the dephasing rate between the wave and electron motion. Particularly, when their values satisfy a critical condition,the electron can stay in phase with the laser and gain the largest energy from the laser. With the enhancement of the electron energy, strong modulations of the relativistic factor cause a considerable enhancement of the electron transverse oscillations across the channel, which makes the electron trajectory become essentially three-dimensional, even if it is flat at the early stage of the acceleration.  相似文献   

20.
Numerical studies are conducted on the electron injection into the first acceleration bucket of a laser wakefield by a weak counter-propagating laser pulse. It is shown that there are two injection mechanisms involved during the colliding laser interaction, the collective injection and stochastic injection. They are caused by the time-averaged ponderomotive force push and stochastic acceleration in the interfering fields, respectively. The threshold amplitude of the injection laser pulse is estimated for the occurrence of electron injection, which is close to that for stochastic acceleration and depends weakly upon the plasma density. The trapping of a large number of injection electrons can result in significant decay of the laser wakefield behind the first wave bucket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号