首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with performance evaluation and scheduling problems in m machine stochastic flow shop with unlimited buffers. The processing time of each job on each machine is a random variable exponentially distributed with a known rate. We consider permutation flow shop. The objective is to find a job schedule which minimizes the expected makespan. A classification of works about stochastic flow shop with random processing times is first given. In order to solve the performance evaluation problem, we propose a recursive algorithm based on a Markov chain to compute the expected makespan and a discrete event simulation model to evaluate the expected makespan. The recursive algorithm is a generalization of a method proposed in the literature for the two machine flow shop problem to the m machine flow shop problem with unlimited buffers. In deterministic context, heuristics (like CDS [Management Science 16 (10) (1970) B630] and Rapid Access [Management Science 23 (11) (1977) 1174]) and metaheuristics (like simulated annealing) provide good results. We propose to adapt and to test this kind of methods for the stochastic scheduling problem. Combinations between heuristics or metaheuristics and the performance evaluation models are proposed. One of the objectives of this paper is to compare the methods together. Our methods are tested on problems from the OR-Library and give good results: for the two machine problems, we obtain the optimal solution and for the m machine problems, the methods are mutually validated.  相似文献   

2.
The paper deals with the m-machine permutation flow shop scheduling problem in which job processing times, along with a processing order, are decision variables. It is assumed that the cost of processing a job on each machine is a linear function of its processing time and the overall schedule cost to be minimized is the total processing cost plus maximum completion time cost. A algorithm for the problem with m = 2 is provided; the best approximation algorithm until now has a worst-case performance ratio equal to . An extension to the m-machine (m ≥2) permutation flow shop problem yields an approximation algorithm with a worst-case bound equal to

, where is the worst-case performance ratio of a procedure used, in the proposed algorithm, for solving the (pure) sequencing problem. Moreover, examples which achieve this bound for = 1 are also presented.  相似文献   

3.
We consider the problem of scheduling n jobs on m parallel machines. Each job has a deterministic processing time and a weight associated with it. For uniform machines we show that discounted flowtime is minimized by serving jobs preemptively in increasing order of their remaining processing times, assigning the job with the shortest remaining processing time to the fastest available machine.  相似文献   

4.
An O(n2) algorithm is presented for the n jobs m parallel machines problem with identical processing times. Due dates for each job are given and the objective is the minimization of the number of late jobs. Preemption is permitted. The problem can be formulated as a maximum flow network model. The optimality proof as well as other properties and a complete example are given.  相似文献   

5.
We consider supply chain scheduling problems where customers release jobs to a manufacturer that has to process the jobs and deliver them to the customers. The jobs are released on-line, that is, at any time there is no information on the number, release and processing times of future jobs; the processing time of a job becomes known when the job is released. Preemption is allowed. To reduce the total costs, processed jobs are grouped into batches, which are delivered to customers as single shipments; we assume that the cost of delivering a batch does not depend on the number of jobs in the batch. The objective is to minimize the total cost, which is the sum of the total flow time and the total delivery cost. For the single-customer problem, we present an on-line two-competitive algorithm, and show that no other on-line algorithm can have a better competitive ratio. We also consider an extension of the algorithm for the case of m customers, and show that its competitive ratio is not greater than 2m if the delivery costs to different customers are equal.  相似文献   

6.
This paper considers the problem of scheduling independent jobs with release dates and tails on m identical machines to minimize the makespan. This m-machines problem is NP-hard in the strong sense. Jackson's schedule is defined as the list schedule built by giving priority to the available job with the largest tail. It is proved that the deviation of Jackson's schedule from the optimum is smaller than twice the largest processing time.Next, a new branching scheme is proposed by associating with each job an interval of time during which it has to be processed. To branch, the interval for a particular job is divided into two smaller ones. This is a general scheme which can be applied to many scheduling problems.Finally, a branch and bound algorithm is explained in detail and computational results are given.  相似文献   

7.
This paper considers the problem of on-line scheduling a list of independent jobs in which each job has an arbitrary release time on m parallel identical machines. In this problem, jobs arrive in form of order before its release time and decisions have to be made whenever an order is placed and the orders arrive according to any sequence. A heuristic algorithm, NMLS, better than MLS is given for any m ? 2. The competitive ratio is improved from 2.93920 to 2.78436.  相似文献   

8.
We study a coordinated scheduling problem of production and transportation in which each job is transported to a single batching machine for further processing. There are m vehicles that transport jobs from the holding area to the batching machine. Each vehicle can transport only one job at a time. The batching machine can process a batch of jobs simultaneously where there is an upper limit on the batch size. Each batch to be processed occurs a processing cost. The problem is to find a joint schedule of production and transportation such that the sum of the total completion time and the total processing cost is optimized. For a special case of the problem where the job assignment to the vehicles is predetermined, we provide a polynomial time algorithm. For the general problem, we prove that it is NP-hard (in the ordinary sense) and present a pseudo-polynomial time algorithm. A fully polynomial time approximation scheme for the general problem is obtained by converting an especially designed pseudo-polynomial dynamic programming algorithm.  相似文献   

9.
We investigate the problems of scheduling n weighted jobs to m parallel machines with availability constraints. We consider two different models of availability constraints: the preventive model, in which the unavailability is due to preventive machine maintenance, and the fixed job model, in which the unavailability is due to a priori assignment of some of the n jobs to certain machines at certain times. Both models have applications such as turnaround scheduling or overlay computing. In both models, the objective is to minimize the total weighted completion time. We assume that m is a constant, and that the jobs are non-resumable.For the preventive model, it has been shown that there is no approximation algorithm if all machines have unavailable intervals even if wi=pi for all jobs. In this paper, we assume that there is one machine that is permanently available and that the processing time of each job is equal to its weight for all jobs. We develop the first polynomial-time approximation scheme (PTAS) when there is a constant number of unavailable intervals. One main feature of our algorithm is that the classification of large and small jobs is with respect to each individual interval, and thus not fixed. This classification allows us (1) to enumerate the assignments of large jobs efficiently; and (2) to move small jobs around without increasing the objective value too much, and thus derive our PTAS. Next, we show that there is no fully polynomial-time approximation scheme (FPTAS) in this case unless P=NP.For the fixed job model, it has been shown that if job weights are arbitrary then there is no constant approximation for a single machine with 2 fixed jobs or for two machines with one fixed job on each machine, unless P=NP. In this paper, we assume that the weight of a job is the same as its processing time for all jobs. We show that the PTAS for the preventive model can be extended to solve this problem when the number of fixed jobs and the number of machines are both constants.  相似文献   

10.
We give a new and efficient approximation algorithm for scheduling precedence-constrained jobs on machines with different speeds. The problem is as follows. We are given n jobs to be scheduled on a set of m machines. Jobs have processing times and machines have speeds. It takes pj/si units of time for machine i with speed si to process job j with processing requirement pj. Precedence constraints between jobs are given in the form of a partial order. If j k, processing of job k cannot start until job j's execution is completed. The objective is to find a non-preemptive schedule to minimize the makespan of the schedule. Chudak and Shmoys (1997, “Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),” pp. 581–590) gave an algorithm with an approximation ratio of O(log m), significantly improving the earlier ratio of due to Jaffe (1980, Theoret. Comput. Sci.26, 1–17). Their algorithm is based on solving a linear programming relaxation. Building on some of their ideas, we present a combinatorial algorithm that achieves a similar approximation ratio but runs in O(n3) time. Our algorithm is based on a new and simple lower bound which we believe is of independent interest.  相似文献   

11.
We consider the preemptive scheduling of n independent jobs on m unrelated machines to minimize the makespan. Preemptive schedules with at most 2m–3 preemptions are built, which are optimal when the maximal job processing time is no more than the optimal schedule makespan. We further restrict the maximal job processing time and obtain optimal schedules with at most m–1 preemptions. This is better than the earlier known best bound of 4m 2–5m+2 on the total number of preemptions. Without the restriction on the maximal job processing time, our (2m–3)-preemptive schedules have a makespan which is no more than either of the following two magnitudes: (a) the maximum between the longest job processing time and the optimal preemptive makespan, and (b) the optimal nonpreemptive makespan. Our (m–1)-preemptive schedules might be at most twice worse than an optimal one.  相似文献   

12.
In this paper we consider the problem of minimizing number of tardy jobs on a single batch processing machine. The batch processing machine is capable of processing up to B jobs simultaneously as a batch. We are given a set of n jobs which can be partitioned into m incompatible families such that the processing times of all jobs belonging to the same family are equal and jobs of different families cannot be processed together. We show that this problem is NP-hard and present a dynamic programming algorithm which has polynomial time complexity when the number of job families and the batch machine capacity are fixed. We also show that when the jobs of a family have a common due date the problem can be solved by a pseudo-polynomial time procedure.  相似文献   

13.
We consider the problem of scheduling n jobs on m parallel machines with inclusive processing set restrictions. Each job has a given release date, and all jobs have equal processing times. The objective is to minimize the makespan of the schedule. Li and Li (2015) have developed an O(n2+mn log?n) time algorithm for this problem. In this note, we present a modified algorithm with an improved time complexity of O(min{m, log?n} ? n log?n).  相似文献   

14.
This paper develops a branch and bound algorithm for the two-stage assembly scheduling problem. In this problem, there are m machines at the first stage, each of which produces a component of a job. When all m components are available, a single assembly machine at the second stage completes the job. The objective is to schedule the jobs on the machines so that the maximum completion time, or makespan, is minimized. A lower bound based on solving an artificial two-machine flow shop problem is derived. Also, several dominance theorems are established and incorporated into the branch and bound algorithm. Computational experience with the algorithm is reported for problems with up to 8000 jobs and 10 first-stage machines.  相似文献   

15.
We study how to efficiently schedule online perfectly malleable parallel jobs with arbitrary arrival times on m ? 2 processors. We take into account both the linear speedup of such jobs and their setup time, i.e., the time to create, dispatch, and destroy multiple processes. Specifically, we define the execution time of a job with length pj running on kj processors to be pj/kj + (kj − 1)c, where c > 0 is a constant setup time associated with each processor that is used to parallelize the computation. This formulation accurately models data parallelism in scientific computations and realistically asserts a relationship between job length and the maximum useful degree of parallelism. When the goal is to minimize makespan, we show that the online algorithm that simply assigns kj so that the execution time of each job is minimized and starts jobs as early as possible has competitive ratio 4(m − 1)/m for even m ? 2 and 4m/(m + 1) for odd m ? 3. This algorithm is much simpler than previous offline algorithms for scheduling malleable jobs that require more than a constant number of passes through the job list.  相似文献   

16.
《Journal of Complexity》1998,14(2):190-209
We consider a scheduling problem with a single machine and a set of jobs which have to be processed sequentially. While waiting for processing, jobs may deteriorate, causing the processing requirement of each job to grow after a fixed waiting timet0. We prove that the problem of minimizing the makespan—completion time for all jobs—is NP-hard. Next we consider the problem for a natural special case where the job requirement grows linearly at a job-specific rate aftert0. We develop a fully polynomial time approximation scheme for the problem in this case. We also give further NP-hardness results, and a polynomial time algorithm for the case where the job-specific rate is proportional to the initial processing requirement of each job.  相似文献   

17.
Each of n jobs is to be processed without interruption on a single machine which can handle only one job at a time. Each job becomes available for processing at its release date, requires a processing time and has a positive weight. Given a processing order of the jobs, the earliest completion time for each job can be computed. The objective is to find a processing order of the jobs which minimizes the sum of weighted completion times. In this paper a branch and bound algorithm for the problem is derived. Firstly a heuristic is presented which is used in calculating the lower bound. Then the lower bound is obtained by performing a Lagrangean relaxation of the release date constraints; the Lagrange multipliers are chosen so that the sequence generated by the heuristic is an optimum solution of the relaxed problem thus yielding a lower bound. A method to increase the lower bound by deriving improved constraints to replace the original release date constraints is given. The algorithm, which includes several dominance rules, is tested on problems with up to fifty jobs. The computational results indicate that the version of the lower bound using improved constraints is superior to the original version.  相似文献   

18.
We consider the parallel-machine scheduling problem in which the processing time of a job is a simple linear increasing function of its starting time. The objective is to minimize the total completion time. We give a fully polynomial-time approximation scheme (FPTAS) for the case with m identical machines, where m is fixed. This study solves an open problem that has been posed in the literature for ten years.  相似文献   

19.
We analyze two local search algorithms for multiprocessor scheduling. The first algorithm is a job interchange algorithm for identical parallel machines due to Finn and Horowitz (Bit 19 (1979) 312). We construct instances for which this algorithm takes a quadratic number of iterations. This contradicts the original analysis of Finn and Horowitz who claimed a linear number of iterations.The second algorithm adds an additional rule to the Finn and Horowitz algorithm. Even for n jobs on m uniformly related machines, this modified algorithm takes only O(nm) iterations.  相似文献   

20.
A well known industry application that allows controllable processing times is the manufacturing operations on CNC machines. For each turning operation as an example, there is a nonlinear relationship between the manufacturing cost and its required processing time on a CNC turning machine. If we consider total manufacturing cost (F1) and total weighted completion time (F2) objectives simultaneously on a single CNC machine, making appropriate processing time decisions is as critical as making job sequencing decisions. We first give an effective model for the problem of minimizing F1 subject to a given F2 level. We deduce some optimality properties for this problem. Based on these properties, we propose a heuristic algorithm to generate an approximate set of efficient solutions. Our computational results indicate that the proposed algorithm performs better than the GAMS/MINOS commercial solver both in terms of solution quality and computational requirements such that the average CPU time is only 8% of the time required by the GAMS/MINOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号