共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the electron–phonon interaction in a polar–polar single heterostructure through the use of the linear combination of hybrid phonon modes, considering the role of longitudinal optical, transverse optical and interface modes, using a continuum model that accounts for both mechanical and electrical continuity over a heterostructure interface. We discuss the use of other models for such systems, such as the bulk phonon (3DP) and dielectric continuum (DC) models, using previously developed sum-rules to explain the limitations on their validity. We find that our linear combination (LC) model gives an excellent agreement with scattering rates previously derived using the 3DP and DC models when the lattice dispersion is weak enough to be ignored, however, when there is a noticeable lattice dispersion, the LC model returns a different answer, suggesting that interface modes play a much greater part in the scattering characteristics of the system under certain conditions. We also discuss the remote phonon effect in polar/polar heterostructures. 相似文献
2.
We study the electronic transport in the presence of electron–phonon interaction (EPI) for a molecular electronic device. Instead of mean field approximation (MFA), the related phonon correlation function is conducted with the Langreth theorem (LT). We present formal expressions for the bandwidth of the electron’s spectral function in the central region of the devices, such as quantum dot (QD), or single molecular transistor (SMT). Our results show that the out-tunneling rate depends on the energy, bias voltage and the phonon field. Besides, the predicted conductance map, behaving as a function of bias voltage and the gate voltage, gets blurred at the high bias voltage region. These EPI effects are consistent with the experimental observations in the EPI transport experiment. 相似文献
3.
Intikhab A. Ansari 《Physica C: Superconductivity and its Applications》2010,470(11-12):508-510
Here, we report the efficient and feasible analytical method for the generalized Bloch–Gruneisen law in association with Debye temperature and various temperatures range in terms of incomplete gamma function. In addition, our results are in agreement with previous reports as shown in this letter. Bloch–Gruneisen function describes the contribution of electron–phonon interaction to the results of temperature dependence behavior of resistivity for integer and noninteger values of index m. In conclusion, the algorithm is constructed in Fortran 90 language for replicate the variation of temperature dependence of resistivity for pristine MgB2 sample. Moreover, the comparison of numerical results with the proposed method reveals the validity and precision of the method. 相似文献
4.
5.
The effects of elastic and inelastic electron–phonon interactions on current–voltage characteristic and tunnelling magnetoresistance (TMR) of Li@C59X (X = N, B) molecule that is coupled to two ferromagnetic electrodes was investigated using the non-equilibrium Green's function (NEGF) method. Our results by taking also into consideration spin degrees of freedom (excluding spin-mixing effects) indicate that the presence of inelastic electron–phonon interaction polaron formation increases current and shifts the TMR behaviour to higher values. Also, an increase of two orders of magnitude observed in current for Li@C59B compared to C60. 相似文献
6.
Temperature-dependent Raman investigations of titanium in the α and pressure-quenched ω-phase have been carried out. The results obtained suggest the possible coexistence of both phases at ambient pressure and low temperatures. Comparison of the low-temperature E2g phonon self-energies in both phases with simulations based on the calculated electronic structures for α- and ω-Ti implies significant contributions from non-adiabatic electron–phonon interactions. 相似文献
7.
8.
《Physics letters. A》1999,259(6):466-475
The effects of squeezing-antisqueezing resulting from the motion and density fluctuation of the electrons on the properties of both electrons and phonons have been studied by using a new variational ansatz with correlated displacement and squeezing in strongly coupled electron–phonon systems. The effects results in (1) reduction of the ground state energy, and enhancement of stability of the systems, (2) increase of the binding energy of the polaron occurred and weakening of growing speed of polaron narrowing of electron band, (3) increase of the charge density wave order and (4) suppression of increased tendency of anomalous quantum fluctuation of the phonons in the systems. The antisqueezed effect plays an important role in determining the properties of the electrons and phonons in the strongly coupled electron–phonon systems. 相似文献
9.
Using the Density Functional Theory (DFT) within the Generalized Gradient Approximation (GGA) pseudopotential and plane wave basis method along with the frozen-phonon approach that starts from the ab initio evaluation of the total energy Etot of the solid with frozen-in atomic displacements, it is found that a superposition of A2u and the E2gvibrations modes is the key factor in the superconducting mechanism in MgB2 compound. Electron–Phonon coupling to these A2u and E2g phonon modes especially at the zone-boundary A point of the hexagonal Brilliouin zone leads to an interband hole charge transfer (and transfer back) between in-plane σ bond to the out-of-plane π bond along with an interatomic electron charge transfer (and transfer back) between the Magnesium s-states to the Boron out-of-plane pz-state. The direction of the electronic current is opposite to that of hole current so that it reinforces the polarization associated with these currents and may generate a large dynamical charge at a given critical temperature Tc that drives the compound into the superconducting state. 相似文献
10.
Within the frame of the Pavlov–Firsov spin–phonon coupling model, we study the spin-flip assisted by the acoustical phonon scattering between the first-excited state and the ground state in quantum dots. We analyze the behaviors of the spin relaxation rates as a function of an external magnetic field and lateral radius of quantum dot. The different trends of the relaxation rates depending on the magnetic field and lateral radius are obtained, which may serve as a channel to distinguish the relaxation processes and thus control the spin state effectively. 相似文献
11.
The persistent current in the ground state of a quantum ring threaded by a magnetic flux is calculated within the framework of the Holstein-Hubbard model. It is found that the persistent current is suppressed by both the electron–electron and electron–phonon interactions. Calculation of Drude weight reveals that the persistent current is diamagnetic in nature. It is observed that as the number of atoms in the quantum ring increases, the persistent current decays in a continuous way. It is finally predicted that there exists an intervening metallic phase flanked in real time by two insulating phases, the SDW phase and the CDW phase. 相似文献
12.
We have calculated the structural and electronic properties of SrPtAs in a hexagonal KZnAs-type of crystal structure using a generalized gradient approximation of the density functional theory and the ab initio planewave pseudopotential method. These results are used to further calculate the phonon dispersions curves and the phonon density of states using a linear response approach based on the density functional theory. Using the electronic and phonon results, the electron–phonon coupling is computed to be of the intermediate strength of 0.78. In large part, this is contributed by the phonon modes dominated by the vibrations of Pt and As atoms. The superconducting critical temperature is estimated to be 1.9 K, in good accord with its experimental value of 2.4 K. 相似文献
13.
Yu. S. Ponosov A. A. Makhnev S. V. Streltsov V. B. Filippov N. Yu. Shitsevalova 《JETP Letters》2015,102(8):503-507
Electronic Raman scattering in YB6 and in its structural and electronic analog LaB6 has been studied in the temperature range of 10–730 K. The experimental spectra have been compared to those calculated on the basis of ab initio band structures with renormalization owing to the electron–phonon interaction. Good agreement between the calculation and experiment for LaB6 has been obtained throughout the entire temperature range. This allows the determination of the coupling constant λ ep = 0.25. To satisfactorily describe the spectra of electronic light scattering in YB6, it is necessary to introduce an additional electron relaxation channel. In this case, the estimate of the electron–phonon coupling constant λ ep is no more than 0.4; for this reason, a high superconducting transition temperature cannot be explained only by the phonon mechanism. 相似文献
14.
Ultrafast two-dimensional infrared (2D-IR) spectroscopy is used to study the picosecond dynamics of a vibrational probe molecule dissolved in a fragile glass former. The spectral dynamics are observed as the system is cooled to within a few degrees of the glass transition temperature (T(g)). We observe nonexponential relaxation of the frequency-frequency correlation function, similar to what has been reported for other dynamical correlation functions. In addition, we see evidence for α-like relaxation, typically associated with long-time, cooperative molecular motion, on the ultrafast time scale. The data suggests that the spectral dynamics are sensitive to cooperative motion occurring on time scales that are necessarily longer than the observation time. 相似文献
15.
B. Chimier V. T. Tikhonchuk L. Hallo 《Applied Physics A: Materials Science & Processing》2008,92(4):843-848
The multi-phase equation of state by Bushman et al. (Sov. Tech. Rev. 5:1–44, 2008) is modified to describe states with different electron and ion temperatures and it is applied to the non-equilibrium evolution
of an aluminum sample heated by a subpicosecond laser pulse. The sample evolution is described by the two-temperature model
for the electron and ion temperatures, while the pressure and density are described by a simplified relaxation equation. The
pressure relaxation in the heating stage reduces the binding energy and facilitates the electron-driven ablation. The model
is applied to estimate the ablation depth of an Al target irradiated by a subpicosecond laser pulse. It improves the agreement
with the experimental data and provides a new explanation of the ablation process. 相似文献
16.
Atomic metallic hydrogen, which has a lattice with the FDDD unit cell symmetry, has been shown to be a stable phase at a hydrostatic pressure of 350–500 GPa. The found structure has a phonon spectrum which is stable with respect to decay. The structural, electronic, phonon, etc., characteristics of normal metallic phases of hydrogen at a pressure of 350–500 GPa have been ab initio calculated. 相似文献
17.
The significance of the electron–phonon interaction for optically stimulated luminescence (OSL) process in quartz is demonstrated. OSL variation with temperature has been investigated for four samples of natural quartz. Changes of the OSL decay rate have been observed for all components of the OSL signal. The scale and tendency of these changes are comparable with outcomes of computer simulations carried out for the model composed of two deep electron traps, one shallow trap and one recombination centre, taking into account the electron–phonon interactions. 相似文献
18.
Validation of the Wiedemann–Franz law in a granular s-wave superconductor in the nanometer scale 下载免费PDF全文
The present study tries to evaluate the validity of the Wiedemann–Franz law in a granular s-wave superconductor in the presence of concentrated impurities. By using Green's function method and the Kubo formula technique, three distinct contributions of the Aslamazov–Larkin, the Maki–Thompson and, the density of states are calculated for both the electrical conductivity and the thermal conductivity in a granular s-wave superconductor. It is demonstrated that these different contributions to the fluctuation conductivity depend differently on the tunneling because of their different natures. This study examines the transport in a granular superconductor system in three dimensions in the limit of large tunneling conductance,which makes it possible to ignore all localization effects and the Coulomb interaction. We find that the tunneling is efficient near the critical temperature and that there is a crossover to the characteristic behavior of a homogeneous system.When it is far from the critical temperature, the tunneling is not effective and the system behaves as an ensemble of real zero-dimensional grains. The results show that the Wiedemann–Franz law is violated in both temperature regions. 相似文献
19.
20.
Stella Lorenzo Smyth Jonathan Dromey Brendan Kohanoff Jorge 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2021,75(7):1-9
The European Physical Journal D - We discuss a Faddeev-like iterative approach which allows one to consistently include the Coulomb potential in strong field phenomena through a Born series. To... 相似文献