首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider a nonstandard elliptic eigenvalue problem of second order on a two-component domain consisting of two intervals with a contact point. The interaction between the two domains is expressed through a coupling condition of nonlocal type, more specifically, in integral form. The problem under consideration is first stated in its variational form and next interpreted as a second-order differential eigenvalue problem. The aim is to set up a finite element method for this problem. The error analysis involved is shown to be affected by the nonlocal condition, which requires a suitable modification of the vector Lagrange interpolant on the overall finite element mesh. Nevertheless, we arrive at optimal error estimates. In the last section, an illustrative numerical example is given, which confirms the theoretical results.  相似文献   

2.
In applications of linear algebra including nuclear physics and structural dynamics, there is a need to deal with uncertainty in the matrices. We focus on matrices that depend on a set of parameters ω and we are interested in the minimal eigenvalue of a matrix pencil ( A , B ) with A , B symmetric and B positive definite. If ω can be interpreted as the realization of random variables, one may be interested in statistical moments of the minimal eigenvalue. In order to obtain statistical moments, we need a fast evaluation of the eigenvalue as a function of ω . Because this is costly for large matrices, we are looking for a small parameterized eigenvalue problem whose minimal eigenvalue makes a small error with the minimal eigenvalue of the large eigenvalue problem. The advantage, in comparison with a global polynomial approximation (on which, e.g., the polynomial chaos approximation relies), is that we do not suffer from the possible nonsmoothness of the minimal eigenvalue. The small‐scale eigenvalue problem is obtained by projection of the large‐scale problem. Our main contribution is that, for constructing the subspace, we use multiple eigenvectors and derivatives of eigenvectors. We provide theoretical results and document numerical experiments regarding the beneficial effect of adding multiple eigenvectors and derivatives.  相似文献   

3.

In this paper, a type of accurate a posteriori error estimator is proposed for the Steklov eigenvalue problem based on the complementary approach, which provides an asymptotic exact estimate for the approximate eigenpair. Besides, we design a type of cascadic adaptive finite element method for the Steklov eigenvalue problem based on the proposed a posteriori error estimator. In this new cascadic adaptive scheme, instead of solving the Steklov eigenvalue problem in each adaptive space directly, we only need to do some smoothing steps for linearized boundary value problems on a series of adaptive spaces and solve some Steklov eigenvalue problems on a low dimensional space. Furthermore, the proposed a posteriori error estimator provides the way to refine mesh and control the number of smoothing steps for the cascadic adaptive method. Some numerical examples are presented to validate the efficiency of the algorithm in this paper.

  相似文献   

4.
In this paper, a type of accurate a posteriori error estimator is proposed for the Steklov eigenvalue problem based on the complementary approach, which provides an asymptotic exact estimate for the approximate eigenpair. Besides, we design a type of cascadic adaptive finite element method for the Steklov eigenvalue problem based on the proposed a posteriori error estimator. In this new cascadic adaptive scheme, instead of solving the Steklov eigenvalue problem in each adaptive space directly, we only need to do some smoothing steps for linearized boundary value problems on a series of adaptive spaces and solve some Steklov eigenvalue problems on a low dimensional space. Furthermore, the proposed a posteriori error estimator provides the way to refine meshes and control the number of smoothing steps for the cascadic adaptive method. Some numerical examples are presented to validate the efficiency of the algorithm in this paper.  相似文献   

5.
In this paper we study the residual type a posteriori error estimates for general elliptic (not necessarily symmetric) eigenvalue problems. We present estimates for approximations of semisimple eigenvalues and associated eigenvectors. In particular, we obtain the following new results: 1) An error representation formula which we use to reduce the analysis of the eigenvalue problem to the analysis of the associated source problem; 2) A local lower bound for the error of an approximate finite element eigenfunction in a neighborhood of a given mesh element T.  相似文献   

6.
In this paper we analyze the stream function-vorticity-pressure method for the Stokes eigenvalue problem. Further, we obtain full order convergence rate of the eigenvalue approximations for the Stokes eigenvalue problem based on asymptotic error expansions for two nonconforming finite elements, Q 1rot and EQ 1rot. Using the technique of eigenvalue error expansion, the technique of integral identities and the extrapolation method, we can improve the accuracy of the eigenvalue approximations. This project is supported in part by the National Natural Science Foundation of China (10471103) and is subsidized by the National Basic Research Program of China under the grant 2005CB321701.  相似文献   

7.
We consider a new adaptive finite element (AFEM) algorithm for self‐adjoint elliptic PDE eigenvalue problems. In contrast to other approaches we incorporate the inexact solutions of the resulting finite‐dimensional algebraic eigenvalue problems into the adaptation process. In this way we can balance the costs of the adaptive refinement of the mesh with the costs for the iterative eigenvalue method. We present error estimates that incorporate the discretization errors, approximation errors in the eigenvalue solver and roundoff errors, and use these for the adaptation process. We show that it is also possible to restrict to very few iterations of a Krylov subspace solver for the eigenvalue problem on coarse meshes. Several examples are presented to show that this new approach achieves much better complexity than the previous AFEM approaches which assume that the algebraic eigenvalue problem is solved to full accuracy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we present spectral Galerkin approximation and rigorous error analysis for the Steklov eigenvalue problem in a circular domain. First of all, we use the polar coordinate transformation and technique of separation of variables to reduce the problem to a sequence of equivalent 1‐dimensional eigenvalue problems that can be solved individually in parallel. Then, we derive the pole conditions and introduce weighted Sobolev space according to pole conditions. Together with the approximate properties of orthogonal polynomials, we prove the error estimates of approximate eigenvalues for each 1‐dimensional eigenvalue problem. Finally, we provide some numerical experiments to validate the theoretical results and algorithms.  相似文献   

9.
讨论了带有非局部边界条件的一维Dirac方程BdY/dx+P(x)Y=λY的特征值问题,其中首先建立了问题的特征值集合与一个整函数u(λ)零点集合的对应,并对Dirac算子的特征值进行了估计,然后借助于一个积分恒等式,采用留数方法,得到了该问题的特征值的迹恒等式.  相似文献   

10.
The main goal of this paper is to present recovery type a posteriori error estimators and superconvergence for the nonconforming finite element eigenvalue approximation of self-adjoint elliptic equations by projection methods. Based on the superconvergence results of nonconforming finite element for the eigenfunction we derive superconvergence and recovery type a posteriori error estimates of the eigenvalue. The results are based on some regularity assumption for the elliptic problem and are applicable to the lowest order nonconforming finite element approximations of self-adjoint elliptic eigenvalue problems with quasi-regular partitions. Therefore, the results of this paper can be employed to provide useful a posteriori error estimators in practical computing under unstructured meshes.  相似文献   

11.
In this paper, we consider problems of eigenvalue optimization for elliptic boundary-value problems. The coefficients of the higher derivatives are determined by the internal characteristics of the medium and play the role of control. The necessary conditions of the first and second order for problems of the first eigenvalue maximization are presented. In the case where the maximum is reached on a simple eigenvalue, the second-order condition is formulated as completeness condition for a system of functions in Banach space. If the maximum is reached on a double eigenvalue, the necessary condition is presented in the form of linear dependence for a system of functions. In both cases, the system is comprised of the eigenfunctions of the initial-boundary value problem. As an example, we consider the problem of maximization of the first eigenvalue of a buckling column that lies on an elastic foundation.  相似文献   

12.
Summary. The aim of this work is to study a decoupled algorithm of a fixed point for solving a finite element (FE) problem for the approximation of viscoelastic fluid flow obeying an Oldroyd B differential model. The interest for this algorithm lies in its applications to numerical simulation and in the cost of computing. Furthermore it is easy to bring this algorithm into play. The unknowns are the viscoelastic part of the extra stress tensor, the velocity and the pressure. We suppose that the solution is sufficiently smooth and small. The approximation of stress, velocity and pressure are resp. discontinuous, continuous, continuous FE. Upwinding needed for convection of , is made by discontinuous FE. The method consists to solve alternatively a transport equation for the stress, and a Stokes like problem for velocity and pressure. Previously, results of existence of the solution for the approximate problem and error bounds have been obtained using fixed point techniques with coupled algorithm. In this paper we show that the mapping of the decoupled fixed point algorithm is locally (in a neighbourhood of ) contracting and we obtain existence, unicity (locally) of the solution of the approximate problem and error bounds. Received July 29, 1994 / Revised version received March 13, 1995  相似文献   

13.
By means of eigenvalue error expansion and integral expansion techniques, we propose and analyze the stream function-vorticity-pressure method for the eigenvalue problem associated with the Stokes equations on the unit square. We obtain an optimal order of convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation and an a posteriori error estimate for the eigenvalue. Finally, numerical experiments are reported. The first author was supported by China Postdoctoral Sciences Foundation.  相似文献   

14.
In this article, we consider a penalty finite element (FE) method for incompressible Navier‐Stokes type variational inequality with nonlinear damping term. First, we establish penalty variational formulation and prove the well‐posedness and convergence of this problem. Then we show the penalty FE scheme and derive some error estimates. Finally, we give some numerical results to verify the theoretical rate of convergence. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 918–940, 2017  相似文献   

15.
A boundary-value problem of finding eigenvalues is considered for the negative Laplace operator in a disk with Neumann boundary condition on almost all the circle except for a small arc of vanishing length, where the Dirichlet boundary condition is imposed. A complete asymptotic expansion with respect to a parameter (the length of the small arc) is constructed for an eigenvalue of this problem that converges to a double eigenvalue of the Neumann problem.  相似文献   

16.
In this paper,a general method to derive asymptotic error expansion formulas for the mixed finite element approximations of the Maxwell eigenvalue problem is established.Abstract lemmas for the error of the eigenvalue approximations are obtained.Based on the asymptotic error expansion formulas,the Richardson extrapolation method is employed to improve the accuracy of the approximations for the eigenvalues of the Maxwell system from θ(h2) to θ(h4) when applying the lowest order Nédé1ec mixed finite element and a nonconforming mixed finite element.To our best knowledge,this is the first superconvergence result of the Maxwell eigenvalue problem by the extrapolation of the mixed finite element approximation.Numerical experiments are provided to demonstrate the theoretical results.  相似文献   

17.
Data assimilation algorithms combine prior and observational information, weighted by their respective uncertainties, to obtain the most likely posterior of a dynamical system. In variational data assimilation the posterior is computed by solving a nonlinear least squares problem. Many numerical weather prediction (NWP) centers use full observation error covariance (OEC) weighting matrices, which can slow convergence of the data assimilation procedure. Previous work revealed the importance of the minimum eigenvalue of the OEC matrix for conditioning and convergence of the unpreconditioned data assimilation problem. In this article we examine the use of correlated OEC matrices in the preconditioned data assimilation problem for the first time. We consider the case where there are more state variables than observations, which is typical for applications with sparse measurements, for example, NWP and remote sensing. We find that similarly to the unpreconditioned problem, the minimum eigenvalue of the OEC matrix appears in new bounds on the condition number of the Hessian of the preconditioned objective function. Numerical experiments reveal that the condition number of the Hessian is minimized when the background and observation lengthscales are equal. This contrasts with the unpreconditioned case, where decreasing the observation error lengthscale always improves conditioning. Conjugate gradient experiments show that in this framework the condition number of the Hessian is a good proxy for convergence. Eigenvalue clustering explains cases where convergence is faster than expected.  相似文献   

18.

In 1975 one of the coauthors, Ikebe, showed that the problem of computing the zeros of the regular Coulomb wave functions and their derivatives may be reformulated as the eigenvalue problem for infinite matrices. Approximation by truncation is justified but no error estimates are given there.

The class of eigenvalue problems studied there turns out to be subsumed in a more general problem studied by Ikebe et al. in 1993, where an extremely accurate asymptotic error estimate is shown.

In this paper, we apply this error formula to the former case to obtain error formulas in a closed, explicit form.

  相似文献   


19.
Criticality problem of nuclear tractors generally refers to an eigenvalue problem for the transport equations. In this paper, we deal with the eigenvalue of the anisotropic scattering transport equation in slab geometry. We propose a new discrete method which was called modified discrete ordinates method. It is constructed by redeveloping and improving discrete ordinates method in the space of L1(X). Different from traditional methods, norm convergence of operator approximation is proved theoretically. Furthermore, convergence of eigenvalue approximation and the corresponding error estimation are obtained by analytical tools.  相似文献   

20.
In this paper we propose and analyse adaptive finite element methods for computing the band structure of 2D periodic photonic crystals. The problem can be reduced to the computation of the discrete spectra of each member of a family of periodic Hermitian eigenvalue problems on a unit cell, parametrised by a two-dimensional parameter - the quasimomentum. These eigenvalue problems involve non-coercive elliptic operators with generally discontinuous coefficients and are solved by adaptive finite elements. We propose an error estimator of residual type and show it is reliable and efficient for each eigenvalue problem in the family. In particular we prove that if the error estimator converges to zero then the distance of the computed eigenfunction from the true eigenspace also converges to zero and the computed eigenvalue converges to a true eigenvalue with double the rate. We also prove that if the distance of a computed sequence of approximate eigenfunctions from the true eigenspace approaches zero, then so must the error estimator. The results hold for eigenvalues of any multiplicity. We illustrate the benefits of the resulting adaptive method in practice, both for fully periodic structures and also for the computation of eigenvalues in the band gap of structures with defect, using the supercell method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号