首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A streaming potential analyzer has been used to investigate the effect of solution chemistry on the surface charge of four commercial reverse osmosis and nanofiltration membranes. Zeta potentials of these membranes were analyzed for aqueous solutions of various chemical compositions over a pH range of 2 to 9. In the presence of an indifferent electrolyte (NaCl), the isoelectric points of these membranes range from 3.0 to 5.2. The curves of zeta potential versus solution pH for all membranes display a shape characteristic of amphoteric surfaces with acidic and basic functional groups. Results with salts containing divalent ions (CaCl2, Na2SO4, and MgSO4) indicate that divalent cations more readily adsorb to the membrane surface than divalent anions, especially in the higher pH range. Three sources of humic acid, Suwannee River humic acid, peat humic acid, and Aldrich humic acid, were used to investigate the effect of dissolved natural organic matter on membrane surface charge. Other solution chemistries involved in this investigation include an anionic surfactant (sodium dodecyl sulfate) and a cationic surfactant (dodecyltrimethylammonium bromide). Results show that humic substances and surfactants readily adsorb to the membrane surface and markedly influence the membrane surface charge.  相似文献   

2.
This study presents a methodology for an in-depth characterization of six representative commercial nanofiltration membranes. Laboratory-made polyethersulfone membranes are included for reference. Besides the physical characterization [molecular weight cut-off (MWCO), surface charge, roughness and hydrophobicity], the membranes are also studied for their chemical composition [attenuated total reflectance Fourier spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS)] and porosity [positron annihilation spectroscopy (PAS)]. The chemical characterization indicates that all membranes are composed of at least two different layers. The presence of an additional third layer is proved and studied for membranes with a polyamide top layer. PAS experiments, in combination with FIB (focused ion beam) images, show that these membranes also have a thinner and a less porous skin layer (upper part of the top layer). In the skin layer, two different pore sizes are observed for all commercial membranes: a pore size of 1.25-1.55 angstroms as well as a pore size of 3.20-3.95 angstroms (both depending on the membrane type). Thus, the pore size distribution in nanofiltration membranes is bimodal, in contrast to the generally accepted log-normal distribution. Although the pore sizes are rather similar for all commercial membranes, their pore volume fraction and hence their porosity differ significantly.  相似文献   

3.
The aim of this work is to study the transport mechanism of ions through nanofiltration membranes. A model based on extended Nernst–Planck and film theory equations is reported. This model can be characterized by three transport parameters: the water permeability Lp, the salt transmittance Φ and the effective salt transfer coefficient Keff. The knowledge of the feed and permeate concentration and of the permeate volumetric flux enable us to calculate these transport parameters. The model is used to estimate cadmium salts rejection by a NANOMAX 50 membrane. Experimental and calculated results are shown to be in good agreement. The model is then successfully extended to experimental data reported in the literature.  相似文献   

4.
New solvent resistant nanofiltration (SRNF) membranes with polypyrrole (PPy) modified toplayer were prepared on different types support by in situ pyrrole polymerization. The morphology of the membranes was studied by SEM. The PPy modified membranes were applied in the filtration of organic solvents. All the PPy modified membranes showed a very high retention of the negatively charged RB in different solvent systems, comparable to those of the MPF-50 and STARMEM 122 commercial membranes, but at much higher flux. The extended filtration experiment in strong aprotic DMF of PPy modified membranes showed a clearly stable permeability and retention over 30 h. In addition, the PPy modified membranes showed a much higher flux in THF systems than for earlier reported crosslinked poly(imide) membranes.  相似文献   

5.
Organic solvent nanofiltration (OSN) is a molecular separation method which offers a sustainable and reliable solution compared to the conventional energy-intensive separation processes. OSN can be successfully applied to several applications, such as food, pharmaceutical, petrochemical and fine-chemical industries. Current research on OSN membranes mainly focuses on polymeric materials due to the ease of processing, controlled formation of pores, lower fabrication costs and higher flexibility as compared with inorganic materials. However, there are some limitations for the polymeric membranes which can be partially surmounted by adding nanoscale fillers into the polymeric matrix to make nanocomposite membranes. This review aims to comprehensively evaluate and report the advances in nanocomposite membranes prepared by using either different nanoscale fillers or various fabrication methods for OSN applications. Nanoparticles that will be discussed include metal-organic framework, graphene oxide, carbon nanotubes, silica, titanium, gold, zeolite and other fillers. The incorporation of these nanoscale fillers into the polymeric membranes can positively influence the mechanical strength, chemical and thermal stability, hydrophilicity, solute selectivity and solvent permeance. This study may provide helpful insights to develop next-generation of OSN membranes for years to come.  相似文献   

6.
纳滤膜分离机理及其应用研究进展   总被引:20,自引:0,他引:20  
王晓琳 《化学通报》2001,64(2):86-90
综述了纳滤膜的分离机理及其应用研究现状和进展,纳滤膜分离过程是一个不可逆过程,其分离机理可以运用电荷模型(空间电荷模型和固定电荷模型)和细孔模型,以及近年才提出的静电排斥和立体阻碍模型等来描述。纳滤膜应用研究现状的介绍包括低聚糖分离和精制、果汁的高浓度浓缩、多肽和氨基酸的分离、抗生素的浓缩与纯化、牛奶及乳清蛋白的浓缩、农产品的综合利用以及纳滤膜生化反应器的开发等。  相似文献   

7.
This work examines the flux performance of organic solvents through a polydimethylsiloxane (PDMS) composite membrane. A selection of n-alkanes, i-alkanes and cyclic compounds were studied in deadend permeation experiments at pressures up to 900 kPa to give fluxes for pure solvents and mixtures between 10 and 100 l m−2 h−1. Results for the chosen alkanes and aromatics, and subsequent modelling using the Hagen–Poiseuille equation, suggest that solvent transport through PDMS can be successfully interpreted via a predominantly hydraulic mechanism. It is suggested that the mechanism has a greater influence at higher pressures and the modus operandi is supported by the non-separation of binary solvent mixtures and a dependency on viscosity and membrane thickness. The effects of swelling that follow solvent–membrane interactions show that the relative magnitudes of the Hildebrand solubility parameter for the active membrane layer and the solvent(s) are a good indicator of permeation level. Solvents constituting a group (e.g. all n-alkanes) induced similar flux behaviours when corrections were made for viscosity and affected comparable swelling properties in the PDMS membrane layer.  相似文献   

8.
Retention measurements with single salt solutions of CaCl2, NaCl and Na2SO4 revealed that the rejection mechanism of commercial polymeric nanofiltration membranes investigated in this study may be divided into two categories:
  • 1.Membranes for which Donnan exclusion seems to play an important role.
  • 2.Membranes for which retention is determined by both Donnan exclusion and size effects.
In category 1 both positively and negatively charged membranes were found.Ceramic γ-Al2O3 ultrafiltration membranes with a pore size of 3 nm showed a same type of salt retention behavior as the positively charged polymeric membranes.The extended Nernst–Planck equation in combination with the Donnan equilibrium has been used to model the flux-retention experiments for the salt solutions. The numerical calculations resulted in a good agreement with experimental data and acceptable values for the fixed charge densities have been determined. The effective membrane thicknesses calculated were higher than those observed by scanning electron microscopy.  相似文献   

9.
Nanofiltration (NF) membrane processes are attractive to remove multivalent ions. As ion retention in NF membranes is determined by both size and charge exclusion, negatively charged membranes are required to reject negatively charged ions. Layer-by-layer assembly of alternating polycation (PC) and polyanion layers on top of a support is a versatile method to produce membranes. Especially the polyelectrolyte (PE) couple polydiallyldimethylammoniumchloride and poly(sodium-4-styrenesulfonate) (PDADMAC/PSS) is extensively investigated. This PE couple cannot form highly negatively charged membrane surfaces, due to interdiffusion and charge overcompensation of PDADMAC into the PSS layers, which limits the operational window to tailor membrane properties. We propose the use of asymmetric layer formation and show how combining two charge densities of one PC can produce negatively charged NF membranes. Starting from hollow fiber ultrafiltration supports coated with base layers of PDADMAC/PSS, they are coated with PDADMAC/PSS or poly(acrylamide-co-diallyldimethylammoniumchloride), P(AM-co-DADMAC)/PSS layers. P(AM-co-DADMAC) has a charge density of only 32% compared to 100% for PDADMAC. The particular novel membranes coated with P(AM-co-DADMAC) have a highly negatively charged surface and high permeabilities (7–19 L/[m2hbar]), with high retentions for Na2SO4 of up to 95%. These values position the developed membranes in the top range compared to commercial and other layer-by-layer membranes.  相似文献   

10.
Positron annihilation spectroscopy (PAS) coupled with a slow positron beam was used to characterize in situ the layer structure and depth profile of the cavity size in thin film composite (TFC) polyamide nanofiltration (NF) membranes prepared by the interfacial polymerization method. Two techniques, using PAS coupled with a slow positron beam of Doppler broadening energy spectra (DBES) and positron annihilation lifetime spectroscopy (PALS) designed to reveal the layer structure and the cavity sizes contained in a multilayer thin film composite NF membrane, were assessed. To the best knowledge of the authors, a characterization of the depth profile of cavities in NF membranes using PAS coupled with a slow positron beam has never been reported. The membranes selected have a composite structure containing three layers: a selective polyamide layer, a transition layer, and a porous support prepared by the phase inversion technique. Furthermore, the cavity size distribution in the selective top layer plays an important role in determining the performance of the NF membranes.  相似文献   

11.
Layer-by-layer deposition of anionic and cationic polyelectrolytes readily converts polymeric ultrafiltration membranes into materials capable of nanofiltration. ATR-FTIR spectra confirm that layer-by-layer deposition occurs on the ultrafiltration substrates, and adsorption of as few as 2.5 bilayers of poly(styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) or 3.5 bilayers of PSS/poly(diallyldimethylammonium chloride) (PDADMAC) reduces the molecular weight cutoff of polyethersulfone ultrafiltration supports from 50 kDa to <500 Da. Deposition of multilayer polyelectrolyte films on 300 and 500 kDa membranes also decreases molecular weight cutoffs, but solute rejections are significantly lower when using these supports, suggesting that the polyelectrolyte films do not completely cover large (0.2-0.4 microm in diameter) pores. On the 50 kDa substrates, PSS/PDADMAC films containing 3.5 bilayers exhibit a 95% rejection of SO(4)(2-) and a chloride/sulfate selectivity of 27, whereas 4.5-bilayer PSS/PAH coatings show a glucose/raffinose selectivity of 100. Pure water flux for [PSS/PAH](3)PSS-coated membranes at 4.8 bar is 1.6 m(3)/(m(2)day), which is more than 2-fold higher than that through a commercial 500 Da membrane.  相似文献   

12.
分别以邻苯二胺、间苯二胺、对苯二胺为水相单体,均苯三甲酰氯(TMC)为油相单体,聚醚砜超滤膜为基膜,界面聚合法制备了复合纳滤膜.在纳滤膜对Na<,2>SO<,4>,MgSO<,4>,MgCl<,2>和NaCl四种盐的脱盐率中,间苯二胺膜最高,对苯二胺膜居中,邻苯二胺膜最差;在纳滤膜耐氯性能方面,对苯二胺最佳,邻苯二胺居...  相似文献   

13.
The rejections of mixtures of polyelectrolyte (sodium polyacrylate) and a monovalent salt (NaCl) were measured as a function of flux for two nanofiltration (NF) membranes. These rejections were corrected for concentration polarization of both salt and polyelectrolyte. The feed concentration ratio of polyelectrolyte to salt ranged from 2 to 20. The extent of reduction in monovalent salt rejection in the presence of polyelectrolyte could be predicted based on the Donnan effect after evaluating the unbound fraction of polyelectrolyte counterion, φP, in independent dialysis experiments. In the dialysis experiments it was found that β was 0.32. From this the value of the Donnan partition coefficient, β was evaluated allowing for the effect of concentration polarization of both polyelectrolyte and salt. The concentration polarization of polyelectrolyte resulted in β changing as a function of flux.  相似文献   

14.
15.
A new model is proposed to evaluate the separation performance of nanofiltration (NF) membranes for the mixed salts solution. In the model, the observed transmission of an ion through a NF membrane is applied to express the separation performance of the membrane for the ion in the mixed salts solution, which has a relationship with the total concentration, the equivalent fraction and the species of each ion in the mixed salts solution. The verification of the model was carried out in the permeation experiments of some mixed salts solutions ((1) Na+, Cl and F; (2) Na+, K+ and Cl; (3) Na+, F, Cl and NO3; (4) Na+, Cl, NO3 and SO42−) through three commercial NF membranes (ESNA 1-LF, ESNA 1 and LES 90). According to the permeation experiments of three NF membranes for some binary salts solutions, the competition coefficients of ions were obtained. The model evaluation results agreed quite well with the experimental data. Finally, the model was applied to evaluate the observed transmission of each ion in the mixed salts solution (Na+, F, Cl, NO3 and SO42−) through three NF membranes. The agreement between the model evaluation results and the experimental data indicated that the model is suitable for evaluating the separation performance of three NF membranes for the mixed salts solution.  相似文献   

16.
The aim of this study is to investigate the transport mechanism of NaCl through nanofiltration membranes in mixed solutions. A model based on the Spiegler–Kedem and Perry–Linder models has been developed. Concentration polarization effects of an organic ion and NaCl were not included in the previous studies. The effects of concentration polarization on salt removal were added to the model. Reactive Black 5 (RB5) was used as an organic ion in the rejection of NaCl by DS5 membrane in all experimental runs. Different concentrations of RB5 and NaCl have been studied and a coefficient of the gel polarization effect of dye on salt removal (α) was defined depending on molar concentration ratios of dye and NaCl. Experimental and calculated results were shown to be in good agreement.  相似文献   

17.
Produced water treatment by nanofiltration and reverse osmosis membranes   总被引:4,自引:1,他引:3  
Produced water, water that is co-produced during oil and gas manufacturing, represents the largest source of oily wastewaters. Given high oil and gas prices, oil and gas production from non-conventional sources such as tar sands, oil shale and coal bed methane will continue to expand resulting in large quantities of impaired produced water. Treatment of this produced water could improve the economic viability of these oil and gas fields and lead to a new source of water for beneficial use.Two nanofiltration and one low-pressure reverse osmosis membrane have been tested using three produced waters from Colorado, USA. The membranes were analyzed before and after produced water filtration using field emission scanning electron microscopy (FESEM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). In addition, membrane–water contact angles have been measured. XPS data indicate adsorption of organic and inorganic species during filtration. FESEM and ATR-FTIR data support theses findings. Water contact angles indicate the effect of membrane hydrophilicity on fouling. Our results highlight the value of using multiple surface characterization methods with different depths of penetration in order to determine membrane fouling. Depending on the quality of the produced water and the water quality requirements for the beneficial uses being considered, nanofiltration may be a viable process for produced water treatment.  相似文献   

18.
Fouling of nanofiltration membranes is studied during filtration of aqueous surfactant solutions under different conditions. To this purpose, four typical nanofiltration membranes (Desal51HL, NF270, NTR7450 and NFPES10) and three typical surfactants (nonionic neodol, anionic SDBS and cationic cetrimide) are selected. Fouling is studied as a function of the surfactant concentration, with and without addition of an electrolyte (NaCl), at different pH and when filtering a mixture of surfactants. Adsorption experiments and hydrophobicity measurements (to study the orientation of the surfactants on the membrane surface) are also performed under the different conditions. The least membrane fouling is found for the anionic surfactant SDBS, while for the cationic surfactant cetrimide very low relative fluxes are observed. Neodol shows an intermediate degree of fouling. Both hydrophobic and electrostatic interactions (in the case of ionic surfactants) between the membrane surface and the surfactant explain the degree of adsorption and hence fouling, as membrane fouling is correlated with the amount of adsorbed surfactant. The difference between cetrimide and SDBS becomes especially visible when changing the pH: increasing the pH leads not only to an opposite orientation of the adsorbed surfactants, but also to an opposite trend in adsorbed amount and membrane fouling. This study permits selection of an optimal nanofiltration membrane to recycle wastewater containing surfactants in the carwash industry. The optimal choice would be a hydrophilic membrane with a low molecular weight cut-off and a small negative surface charge at neutral pH. Cationic surfactants in the wastewater should also be avoided as much as possible.  相似文献   

19.
A computer program, NanoFiltran, was developed to simulate the mass transport of multi-ionic aqueous solutions in charged nanofiltration (NF) membranes, based on the Donnan steric partitioning pore and dielectric exclusion (DSPM&DE) model, with incorporation of the non-ideality of electrolyte solutions and concentration polarization effects in the membrane/feed-solution interface. With this computer program, the extended Nernst–Planck (ENP) equations are discretized inside the membrane, using the finite-difference scheme. The discretized ENP equations together with the other model equations are linearized in order to obtain a system of equations that are solved simultaneously. The linearized system of equations is based on an initial guess for the electrical potential and ions concentrations profiles, which are updated iteratively. A robust method of under-relaxation of the electrical potential and ions concentrations ensures that the convergence is achieved even for NF systems that exhibit a very stiff numerical behaviour.  相似文献   

20.
We report the use of a variety of polyelectrolyte multilayers (PEMs) as selective skins in composite membranes for nanofiltration (NF) and diffusion dialysis. Deposition of PEMs occurs through simple alternating adsorption of polycations and polyanions, and separations can be optimized by varying the constituent polyelectrolytes as well as deposition conditions. In general, the use of polycations and polyanions with lower charge densities allows separation of larger analytes. Depending on the polyelectrolytes employed, PEM membranes can remove salt from sugar solutions, separate proteins, or allow size-selective passage of specific sugars. Additionally, because of the minimal thickness of PEMs, NF pure water fluxes through these membranes typically range from 1.5 to 3 m3/(m2 day) at 4.8 bar. Specifically, to separate sugars, we employed poly(styrene sulfonate) (PSS)/poly(diallyldimethylammonium chloride) (PDADMAC) films, which allow 42% passage of glucose along with a 98% rejection of raffinose and a pure water flux of 2.4 m3/(m2 day). PSS/PDADMAC membranes are also capable of separating NaCl and sucrose (selectivity of approximately 10), while high-flux chitosan/hyaluronic acid membranes [pure water flux of 5 m3/(m2 day) at 4.8 bar] may prove useful in protein separations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号