首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
利用射频磁控共溅射方法,在Si衬底上制备了Ni88Cu12薄膜,并且研究了膜厚以及真空磁场热处理温度对畴结构和磁性的影响. X射线衍射结果表明热处理后的薄膜晶粒长大,扫描电子显微镜结果发现不同热处理温度下薄膜表现出不同的形貌特征.热处理前后的薄膜面内归一化磁滞回线结果显示,经过热处理的Ni88Cu12薄膜条纹畴形成的临界厚度降低,未热处理的Ni88Cu12薄膜在膜厚为210 nm时出现条纹畴结构,而经过300℃热处理的Ni88Cu12薄膜在膜厚为105 nm就出现了条纹畴结构.高频磁谱的结果表明,随着热处理温度的增加, Ni88Cu12薄膜的共振峰会有小范围的移动.  相似文献   

2.
3.
采用磁控溅射方法同时在Si(100)和聚酰亚胺(PI)基体上沉积W膜,对比研究不同基体约束对纳米晶W膜微观结构及应力诱导的开裂行为的影响.结果发现,在两种基体上W膜的裂纹形态明显不同.在Si基体上W膜的裂纹呈楔形,而在PI基体上W膜的裂纹呈半圆柱形凸起于薄膜表面.这种裂纹形态的差异源于两种基体上W膜的变形机理不同.在刚性Si基体上,W膜的裂纹扩展是通过晶粒平面内的转动实现的,而在柔性PI基体上W膜裂纹扩展是通过排列晶粒在平面内、外的转动协调完成的.分析表明,两种截然不同的开裂行为与不同基体上薄膜内应力的变 关键词: W膜 残余应力 裂纹 晶粒  相似文献   

4.
5.
刘涛  郭朝晖  李岫梅  李卫 《物理学报》2009,58(3):2030-2034
系统研究了Pt-Co合金磁性能与其微观组织结构间的关系.合金铸锭的X射线衍射结果表明:熔炼后的Pt-Co合金铸锭沿冷却方向存在明显的织构;扫描电镜照片显示合金的组织结构为柱状晶结构,柱状晶的生长方向平行于冷却方向;合金铸锭经塑性变形和再结晶处理后柱状晶组织消失,电镜照片显示处理后的合金晶粒尺寸变小且均匀;对不同组织结构的Pt-Co合金磁性能的测试结果表明,经塑性变形及再结晶处理后合金的磁性能有了明显提高,说明该合金中晶粒尺寸和取向是影响其矫顽力的重要因素. 关键词: 铂钴永磁合金 磁性能 织构  相似文献   

6.
Analysis shows that it is possible to make use of dispersed magnetic ripple fields to obtain a wide frequency linewidth of permeability spectra of soft magnetic thin films. As-sputtered FeCoN thin film sputtered on flexible Kapton substrate is studied as an example. It has ultrawide frequency linewidths of its resonance peaks in the permeability spectra, compared to its counterpart deposited on Si substrate. The frequency linewidth of FeCoN on Kapton substrate decreases with external magnetic field, showing a different field dependence from that of FeCoN on Si substrate. The ultrawide frequency linewidth and its decrease with external magnetic field are ascribed to the dispersed magnetic ripple fields caused by the flexible substrate. This work shows that the flexible substrate is effective in obtaining a wide frequency linewidth of the permeability spectra of soft magnetic thin films.  相似文献   

7.
A study of the magnetic properties of Fe100 − xNdx (18 x 50) films made by rf sputtering has been carried out. The perpendicularly magentized films were fabricated for compositions in the range from x = 35 to 50 at substrate temperatures between 210 to 290°C. The intrinsic perpendicular magnetic anisotropy constant Ku is maximum at about x = 40 where Ku is about 1 × 107 erg/cm3 at room temperature. The temperature dependence of Ku implies that the origin of the perpendicular magnetic anisotropy may be related to some sort of atomic ordering of crystalline clusters in an amorphous matrix.  相似文献   

8.
We have investigated the mechanical and magneto-transport properties of electron beam evaporated Co film on p-Si(1 0 0) substrate. Real time intrinsic stress measurement of the Co film, measured using a cantilever beam technique, shows the evolution of a large tensile stress with the growth of the film on the Si substrate. The analysis of stress reveals a columnar type Volmer–Weber growth which is also confirmed by the atomic force microscopy (AFM) measurements. The Co-film shows high positive (negative) magnetoresistance at all temperatures (below 10 K) on application of out-of-plane (in-plane) magnetic field.  相似文献   

9.
The temperature dependence of the effective magnetic anisotropy constant K(T) of CoFe2O4 nanoparticles is obtained based on the SQUID magnetometry measurements and Mössbauer spectroscopy. The variation of the blocking temperature TB as a function of particle radius r is first determined by associating the particle size distribution and the anisotropy energy barrier distribution deduced from the hysteresis curve and the magnetization decay curve, respectively. Finally, the magnetic anisotropy constant at each temperature is calculated from the relation between r and TB. The resultant effective magnetic anisotropy constant K(T) decreases markedly with increasing temperature from 1.1×107 J/m3 at 5 K to 0.6×105 J/m3 at 280 K. The attempt time τ0 is also determined to be 6.1×10−12 s which together with the K(T) best explains the temperature dependence of superparamagnetic fraction in Mössbauer spectra.  相似文献   

10.
Mn-Zn ferrite nanoparticles with various amounts of cobalt doping have been synthesized by the co-precipitation method. The structure and morphology of the nanoparticles have been characterized by X-ray diffraction and transmission electron microscopy. The effects of cobalt ions on the crystallization behavior, lattice parameters and magnetic properties of Mn-Zn ferrites have been investigated. All the Co-doped ferrite nanoparticles calcined at 1150 °C possess a simple spinel structure and have an approximately spherical shape. The lattice parameters increase almost linearly with increasing Co content. The studies of magnetic properties show that the saturation magnetization Ms strongly depends on the Co content, having a maximum Ms value of 73 emu/g at a Co content of 1.0 at%, and all the Co-doped ferrites, with the average crystallite sizes ranging from 24.5 to 27.0 nm, exhibit superparamagnetism at room temperature.  相似文献   

11.
Influence of Ni content on the microstructure and magnetic and magneto-optical (MO) properties of sputtered (Co1-xNix)Pt3 alloy films has been investigated by means of Kerr spectrometer, Kerr hysteresis looper, X-ray diffractometer (XRD), and atomic force microscopy (AFM). On the whole, the addition of Ni to the CoPt3 alloy film simultaneously decreases the Curie temperature TC and the Kerr rotation angle θK, but the decrease of TC with Ni content is more visible. When the Ni content x is increased from 0 to 0.33, TC decreases from 273 ○C to 233 ○C, whereas the decrease of θK is quite limited and the film still preserves a strong perpendicular magnetic anisotropy (PMA) and a high coercivity, indicating that the (Co1-xNix)Pt3 alloy film with x=0.33 can be used for practical MO applications. Further increase of Ni content decreases the θK significantly and destroys the PMA. XRD and AFM studies show that adding a small amount of Ni in the CoPt3 alloy film will promote the growth of grains and roughen the film surface, and thus enhance the coercivity of the film. We observe also that both the coercivity and PMA are not sensitive to the (111) preferred orientation of the (Co1-xNix )Pt3 alloy films.  相似文献   

12.
13.
Amplitude modulated Kelvin probe force microscopy was performed on molybdenum (Mo)-thin films deposited on Si(001) substrates by RF magnetron sputtering. Evolution of film microstructure from amorphous to crystalline was observed with increasing RF power from 25 W to 200 W. Spatial mapping of work function across the film surface revealed that the Mo-thin film deposited at 200 W possesses an average work function ~4.94 ± 0.06 eV while higher values were observed at lower RF powers. The genesis of distinct periodic changes in work function is attributed to the formation of the surface dipole layer associated with the adsorbates of different polarities (O2/OH or H+). A phenomenological model is also presented to elucidate their effect.  相似文献   

14.
诱导磁场对Bi-Mn合金微观结构与磁性的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
用x射线衍射和低温磁测量方法,系统研究了在外加诱导磁场下制备的Bi Mn合金的微观结构和磁性.结果表明,在外加诱导磁场下制备的Bi Mn wt6%合金呈现典型的双相结构和各向异性特征,MnBi相c轴沿外加诱导磁场方向取向排列.随外加诱导磁场的增大,剩余磁化强度Mr逐渐增大,这说明MnBi相的取向程度越来越好.发现MnBi相的自旋重取向温度TSR随外加诱导磁场的增大逐渐向高温区移动.对外加诱导磁场影响Bi Mn wt6%合金的微观结构和磁性以及该类材料磁各向异性能的物理机理进行了分析和讨论. 关键词: 磁场诱导 Bi Mn合金 MnBi相 定向排列  相似文献   

15.
Superparamagnetic properties of self-aggregated cobalt nanoparticles in the perfluorinated sulfo-cation membrane (MF-4SK) prepared by ion-exchange method were investigated by transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) magnetometry at various temperatures. Our experimental results show that cobalt nanoparticles in MF-4SK exhibit superparamagnetic properties above the blocking temperature (TB), which varies from ∼80 to ∼300 K depending on the cobalt concentration at 100 Oe applied field. The average particle radius of 3.8 nm inferred from Langevin function fit for the concentration of 7.8×1019 cobalt atoms per 1 g of polymer film is in good agreement with TEM observation. This experimental evidence suggests that cobalt nanoparticles in the polymer film obey a single-domain theory. The results are discussed in the light of current theory for the superparamagnetic behavior of magnetic nanoparticles.  相似文献   

16.
Ultrathin Co–Pt alloy films as substrate were studied by the surface magneto-optical Kerr effect. As the growth of Ni, the films show uniquely high polar Kerr responses without any in-plane signals. The coercivity decreased until the thickness of Ni film was higher than 5 ML. A new surface structure was discovered at 7–10 ML Ni/Co–Pt films by the low-energy electron diffraction. Interestingly, polar Kerr signal and coercivity of the 10 ML Ni/Co–Pt(1 1 1) template film reduced rapidly as Co films were further deposited onto only about 1–2 ML. Then the films show a canted magnetization with a rollback hysteresis in the polar configuration during the growth of Co. Coercivity of the 7 ML Co/Ni/Co–Pt film was found unusually down to almost 100 Oe.The corresponding magic number at around 7 ML of Co in the abnormal reduction of coercivity may be attributed to the cluster formations of Co.  相似文献   

17.
The effect of the grain boundary microstructure on the anisotropy and coercivity was investigated in an HDDR Nd-Fe-B permanent magnetic alloy. Considering the special microstructure of its magnetic powder grain, an anisotropic theoretical model influenced simultaneously by the structure defect at the grain boundary and the exchange coupling interaction was put forward. The variations of the structure defect factors based on the nucleation and pinning mechanism with 2r 0/lex (where r 0 and lex are the defect thickness and the length of exchange coupling, respectively) were calculated. The results show that the coercivity mechanism of an HDDR Nd-Fe-B permanent magnetic alloy is greatly related to its microstructure defect at the grain boundary. For a fixed lex, when 2r 0/lex < 1.67, the coercivity is controlled by the pinning mechanism; when 2r 0/lex > 1.67, it is determined by the nucleation mechanism. The coercivity reaches the maximum when 2r 0/lex = 1.67. The calculation result is consistent well with the experimental result given by Morimoto et al. Supported by the National Natural Science Foundation of China (Grant No. 50671055)  相似文献   

18.
Ferromagentic semiconductors have been actively pursued because of their potential as spin polarized carrier sources and easy integration into semiconductor technology. One such material, ZnO has been shown to be a potential Diluted Magnetic Semiconductor (DMS). The appearance of ferromagnetism, however, is found to be sensitive to the processing conditions. We report synthesis of ZnO nanoparticles of size ∼20 nm by a simple co-precipitation technique using metal nitrates and NaOH as precipitant. The particles are self-organised and reveal single crystalline behaviour in electron diffraction pattern. Incorporation of Co in ZnO matrix leads not only to the reduction in crystallite size but also to the modification of the structure. At 5% Co, the particles are highly textured. The particles also aggregate and the aggregated mass have nearly rectangular shape as seen through TEM. Increasing Co to 10%, results into further reduction of particle size and the particles self organize in a line, which looks like nanofibers. This alignment of particles increases by increasing the Co content further. This type of growth of nanofibers above Co ≥ 10% is well correlated with the anisotropic peak broadening observed in the XRD spectra. In addition, Co substitute Zn site up to 20% without showing any extra phase in XRD spectra as compared to 7 to 10% in case of bulk. Transport and magnetic studies indicate that conductivity increases with increasing Co content, but carrier mediated ferromagnetism is absent down to 10 K.   相似文献   

19.
20.
具有条纹磁畴结构的磁性薄膜表现出面内转动磁各向异性,对于解决高频电子器件的方向性问题起着至关重要的作用.本文采用射频磁控溅射的方法,研究了NiFe薄膜的厚度、溅射功率密度、溅射气压等制备工艺参数对条纹磁畴结构、面内静态磁各向异性、面内转动磁各向异性、垂直磁各向异性的影响规律.研究发现,在功率密度15.6 W/cm~2与溅射气压2 mTorr(1 Torr=1.33322×102Pa)下生长的NiFe薄膜,表现出条纹磁畴的临界厚度在250 nm到300 nm之间.厚度为300 nm的薄膜比250 nm薄膜的垂直磁各向异性场增大近一倍,从而磁矩偏离膜面形成条纹磁畴结构,并表现出面内转动磁各向异性.高溅射功率密度可以降低薄膜出现条纹磁畴的临界厚度.在相同功率密度15.6 W/cm~2下生长300 nm的NiFe薄膜,随着溅射气压由2 mTorr增大到9 mTorr,NiFe薄膜的垂直磁各向异性场逐渐由1247.8 Oe(1 Oe=79.5775 A/m)增大到3248.0 Oe,面内转动磁各向异性场由72.5 Oe增大到141.9 Oe,条纹磁畴周期从0.53μm单调减小到0.24μm.NiFe薄膜的断面结构表明柱状晶的形成是表现出条纹磁畴结构的本质原因,高功率密度下低溅射气压有利于柱状晶结构的形成,表现出规整的条纹磁畴结构,高溅射气压会导致柱状晶纤细化,面内转动磁各向异性与面外垂直磁各向异性增强,条纹磁畴结构变得混乱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号