首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One-dimensional (1D) submicron-belts of V2O5 have been prepared by a sol–gel route using V2O5, H2O2 and aniline as starting materials. Thermogravimetric and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy were employed to characterize the samples. Electrochemical behaviors as cathode material in rechargeable lithium-ion batteries were investigated by galvanostatic charge–discharge measurement and cyclic voltammeter. The results showed that the synthesized V2O5 appeared to be submicron-belts and orthorhombic structure. The V2O5 submicron-belts exhibited a high initial discharge capacity of 346 mAh/g and stayed 240 mAh/g after 20 cycles at 0.1 C discharge rate in the potential region 1.8–4.0 V.  相似文献   

2.
A fast and convenient sol–gel route was developed to synthesize LiFePO4/C composite cathode material, and the sol–gel process can be finished in less than an hour. Polyethyleneglycol (PEG), d-fructose, 1-hexadecanol, and cinnamic acid were firstly introduced to non-aqueous sol–gel system as structure modifiers and carbon sources. The samples were characterized by X-ray powder diffraction, field emission scanning electron microscopy, and elemental analysis measurements. Electrochemical performances of LiFePO4/C composite cathode materials were characterized by galvanostatic charge/discharge and AC impedance measurements. The material obtained using compound additives of PEG and d-fructose presented good electrochemical performance with a specific capacity of 157.7 mAh g−1 at discharge rate 0.2 C, and the discharge capacity remained about 153.6 mAh g−1 after 50 cycles. The results indicated that the improved electrochemical performance originated mainly from the microporous network structure, well crystalline particles, and the increased electronic conductivity by proper carbon coating (3.11%).  相似文献   

3.
An in situ chemical synthesis approach has been developed to prepare SnO2–graphene nanocomposite. Field emission scanning electron microscopy and transmission electron microscopy observation revealed the homogeneous distribution of SnO2 nanoparticles (4–6 nm in size) on graphene matrix. The electrochemical reactivities of the SnO2–graphene nanocomposite as anode material were measured by cyclic voltammetry and galvanostatic charge/discharge cycling. The as-synthesized SnO2–graphene nanocomposite exhibited a reversible lithium storage capacity of 765 mAh/g in the first cycle and an enhanced cyclability, which can be ascribed to 3D architecture of the SnO2–graphene nanocomposite.  相似文献   

4.
A gel polymer electrolyte (GPE) was prepared by in-situ thermal polymerization of 1,3-butanediol diacrylate (BDDA) in a EC/EMC/DMC electrolyte solution at 100 °C. The GPE with 15 wt.% polymer content appears as apparently dry polymer with sufficient mechanical strength and shows a high ionic conductivity of 3.2×10–3 S cm–1 at 20 °C. The MCMB–LiCoO2 type polymer Li-ion batteries (PLIB) prepared using this in-situ internal polymerization method exhibit a very high initial charge–discharge efficiency of 92.1%, and can deliver 94.4% of its nominal capacity at 1.0 C rate and 70.7% of its room temperature capacity at –20 °C. Also, the PLIB cells show very good cycling ability with >85% capacity retention after 300 cycles. The excellent charge–discharge properties of the PLIB cells are attributed to the integrated structure in which the polymer matrix spreads over entire region of the cell acting as a strong binder and electrolyte carrier to produce a stabilized electrode–electrolyte interface. In addition, the fabricating process of the polymer cell is quite simple and convenient for practical applications.  相似文献   

5.
Large-scale Li1+x V3O8 nanobelts were successfully fabricated using filter paper as deposition substrate through a simple surface sol–gel method. The nanobelts were as long as tens of micrometers with widths of 0.4–1.0 μm and thickness of 50–100 nm. The nanobelts were characterized by X-ray diffration (XRD), Fourier infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM). The formation mechanism of the nanobelts was investigated, showing that the morphology of the nanobelts is mainly determined by the calcination temperature. Electrochemical properties of the Li1+x V3O8 nanobelts were characterized by charge–discharge experiments, and the results demonstrate that the Li1+x V3O8 nanobelts exhibit a high discharge capacity (278 mAh g−1) and excellent cycling stability.  相似文献   

6.
Core–shell LiFePO4/C composite was synthesized via a sol–gel method and doped by fluorine to improve its electrochemical performance. Structural characterization shows that F ions were successfully introduced into the LiFePO4 matrix. Transmission electron microscopy verifies that F-doped LiFePO4/C composite was composed of nanosized particles with a ~3 nm thick carbon shell coating on the surface. As a cathode material for lithium-ion batteries, the F-doped LiFePO4/C nanocomposite delivers a discharge capacity of 162 mAh/g at 0.1 C rate. Moreover, the material also shows good high-rate capability, with discharge capacities reaching 113 and 78 mAh/g at 10 and 40 C current rates, respectively. When cycled at 20 C, the cell retains 86% of its initial discharge capacity after 400 cycles, demonstrating excellent high-rate cycling performance.  相似文献   

7.
Carbon-coated monoclinic Li3V2(PO4)3 (LVP/C) cathode material has been successfully prepared by a novel glycine-assisted sol–gel method. The product is investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM) and electrochemical method. In the range of 3.0–4.3 V, the LVP/C electrode presents excellent rate capability. It is 125.4 mAh g− 1 that can be delivered at 1 C charge–discharge rate and 99.5 mAh g− 1 is still obtained at 20 C charge–discharge rate. These results demonstrate that the carbon-coated LVP/C composite material prepared via a glycine-assisted sol–gel method has great potential for use in high-power lithium ion batteries.  相似文献   

8.
A comparative study of submicro-crystalline spinel LiMn2O4 powders prepared by two different soft chemical routes such as hydrothermal and sol–gel methods is made. The dependence of the physicochemical properties of the spinel LiMn2O4 powder has been extensively investigated by using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope, cyclic voltammogram, charge–discharge test, and electrochemical impedance spectroscopy (EIS). The results show that the electrochemical performances of spinel LiMn2O4 depend strongly upon the synthesis method. The LiMn2O4 powder prepared by hydrothermal route has higher specific capacity and better cycling performance than the one synthesized from sol–gel method. The former has the max discharge capacity of 114.36 and 99.78 mAh g−1 at the 100th cycle, while the latter has the max discharge capacity of 98.67 and 60.25 mAh g−1 at the 100th cycle. The selected equivalent circuit can fit well the EIS results of synthesized LiMn2O4. For spinel LiMn2O4 from sol–gel method and hydrothermal route in the first charge process R SEI remain almost invariable, R e and R ct first decreasing and then increasing with the increase of polarization potential.  相似文献   

9.
Orthorhombic magnesium manganese silicate (Mg1.03Mn0.97SiO4) was prepared and evaluated as a new cathode material for rechargeable magnesium batteries. Although the electrochemical activity of the Mg1.03Mn0.97SiO4 synthesized by high-temperature solid-state reaction is low, the magnesium storage capacity of nanosized Mg1.03Mn0.97SiO4 prepared by modified sol–gel route and in situ carbon coating reaches 244 mAh g−1. The capacity increase mechanism during charge/discharge cycling was also preliminary studied.  相似文献   

10.
LiFePO4 material was synthesized at 670 °C in an Ar atmosphere using a sol–gel method. This material showed a well developed XRD pattern (orthorhombic structure, Pnma) without any peaks at 2θ = 41°, indicating the absence of FeP or metallic Fe2P impurities. The Li/LiFePO4 cell showed a high initial discharge capacity of more than 150 mA h/g and no capacity decrease until the 70th cycle (>99.9%). This cell also exhibits excellent cycle performance at high current densities of over 30C, without any surface treatment or carbon coating onto the LiFePO4 particles.  相似文献   

11.
Spinel LiNi0.5Mn1.5O4 and LiMn1.4Cr0.2Ni0.4O4 cathode materials have been successfully synthesized by the sol–gel method using citric acid as a chelating agent. The structure and electrochemical performance of these as-prepared powders have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the galvanostatic charge–discharge test in detail. XRD results show that there is a small Li y Ni1-y O impurity peak placed close to the (4 0 0) line of the spinel LiNi0.5Mn1.5O4, and LiMn1.4Cr0.2Ni0.4O4 has high phase purity, and the powders are well crystallized. SEM indicates that LiMn1.4Cr0.2Ni0.4O4 has a slightly smaller particle size and a more regular morphological structure with narrow size distribution than those of LiNi0.5Mn1.5O4. Galvanostatic charge–discharge testing indicates that the initial discharge capacities of LiMn1.4Cr0.2Ni0.4O4 and LiNi0.5Mn1.5O4 cycled at 0.15 C are 129.6 and 130.2 mAh g−1, respectively, and the capacity losses compared to the initial value, after 50 cycles, are 2.09% and 5.68%, respectively. LiMn1.4Cr0.2Ni0.4O4 cathode has a higher electrode coulombic efficiency than that of the LiNi0.5Mn1.5O4 cathode, implying that Ni and Cr dual substitution is beneficial to the reversible intercalation and de-intercalation of Li+.  相似文献   

12.
To improve the electrochemical properties of Li[Ni1/3Co1/3Mn1/3]O2 at high charge end voltage (4.6 V), a series of the mixed transition metal compounds, Li(Ni1/3Co1/3 − x Mn1/3M x )O2 (M = Mg, Cr, Al; x = 0.05), were synthesized via hydroxide coprecipitation method. The effects of doping Mg, Cr, and Al on the structure and the electrochemical performances of Li[Ni1/3Co1/3Mn1/3]O2 were compared by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge–discharge tests, and electrochemical impedance spectroscopy. The XRD results show that all the samples keep layered structures with R3m space group as the Li[Ni1/3Co1/3Mn1/3]O2. SEM images show that all the compounds have spherical shapes and the Cr-doped sample has the largest particle size. Furthermore, galvanostatic charge–discharge tests confirm that the Cr-doped electrode shows improved cycling performance than the undoped material. The capacity retention of Li(Ni1/3Co1/3 − 0.05Mn1/3Cr0.05)O2 is 97% during 50 cycles at 2.8∼4.6 V. The improved cycling performance at high voltage can be attributed to the larger particle size and the prevention of charge transfer resistance (R ct) increase during cycling.  相似文献   

13.
LiMn2O4 nanorods were prepared by a facile hydrothermal method in combination with traditional solid-state reactions and characterized by X-ray diffraction analysis. Their electrochemical behavior was tested by cyclic voltammetry and repeated charge/discharge cycling. Results show that the reversible intercalation/deintercalation of Li-ions into/from LiMn2O4 cathode can yield up to 110 mAh/g at 4.5 C, and still retains 88% at the very large charge rate of 90 C with well-defined charge and discharge plateaus. It presents very high power density, up to 14.5 kW/kg, and very excellent cycling behavior, 94% capacity retention after 1200 cycles. It is thus a competitor for LiFePO4.  相似文献   

14.
Shen  Chenfei  Ma  Luyao  Zheng  Mingbo  Zhao  Bin  Qiu  Danfeng  Pan  Lijia  Cao  Jieming  Shi  Yi 《Journal of Solid State Electrochemistry》2012,16(5):1999-2004
Graphene-SnS2 nanocomposites were prepared via a solvothermal method with different loading of SnS2. The nanostructure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD patterns revealed that hexagonal SnS2 was obtained. SEM and TEM results indicated that SnS2 particles distributed homogeneously on graphene sheets. The electrochemical properties of the samples as active anode materials for lithium-ion batteries were examined by constant current charge–discharge cycling. The composite with weight ratio between graphene and SnS2 of 1:4 had the highest rate capability among all the samples and its reversible capacity after 50 cycles was 351 mAh/g, which was much higher than that of the pure SnS2 (23 mAh/g). With graphene as conductive matrix, homogeneous distribution of SnS2 nanoparticles can be ensured and volume changes of the nanoparticles during the charge and discharge processes can be accomodated effectively, which results in good electrochemical performance of the composites.  相似文献   

15.
以乙酸盐(乙酸锂、乙酸钠、乙酸钴、乙酸镍、乙酸锰等)为原材料,采用球磨辅助高温固相法制备Li_(1.0)Na_(0.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2正极材料。借助XRD、SEM等表征材料的结构和形貌,利用循环伏安、恒流充放电、交流阻抗等方法研究材料的电化学性能。结果表明,钠的掺杂导致颗粒表面光滑度降低,形成Na_(0.77)Mn O_(2.05)新相。0.05C活化过程中,掺钠样品和未掺钠样品首次放电比容量分别为258.4 m Ah·g~(-1)和215.8 m Ah·g~(-1),库伦效率分别为75.2%和72.8%;2C放电比容量分别为116.3 m Ah·g~(-1)和106.2 m Ah·g~(-1)。研究发现,掺钠可减小首次充放电过程的不可逆容量,提高容量保持率;改善倍率性能与容量恢复特性;降低SEI膜阻抗和电荷转移阻抗;掺钠后样品首次循环就可以基本完成Li_2Mn O_3组分向稳定结构的转化,而未掺杂的样品需要两次循环才能逐步完成该过程;XPS结果表明,掺钠样品中Ni~(2+)、Co~(3+)、Mn~(4+)所占比例明显提高,改善了样品的稳定性和电化学性能;循环200次后的XRD结果表明掺钠与未掺钠材料在脱嵌锂反应中的相变化过程基本一致,良好有序的层状结构遭到破坏是循环过程中容量衰减的主要原因。  相似文献   

16.
Porous silica-based materials are a promising alternative to graphite anodes for Li-ion batteries due to their high theoretical capacity, low discharge potential similar to pure silicon, superior cycling stability compared to silicon, abundance, and environmental friendliness. However, several challenges prevent the practical application of silica anodes, such as low coulombic efficiency and irreversible capacity losses during cycling. The main strategy to tackle the challenges of silica as an anode material has been developed to prepare carbon-coated SiO2 composites by carbonization in argon atmosphere. A facile and eco-friendly method of preparing carbon-coated SiO2 composites using sucrose is reported herein. The carbon-coated SiO2 composites were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, cyclic voltammetry, and charge–discharge cycling. A C/SiO2-0.085 M calendered electrode displays the best cycling stability, capacity of 714.3 mAh·g−1, and coulombic efficiency as well as the lowest charge transfer resistance over 200 cycles without electrode degradation. The electrochemical performance improvement could be attributed to the positive effect of the carbon thin layer that can effectively diminish interfacial impedance.  相似文献   

17.
Among the various positive electrode materials investigated for Li-ion batteries, spinel LiMn2O4 is one of the most important materials. Small particles of the active materials facilitate high-rate capability due to large surface to mass ratio and small diffusion path length. The present work involves the synthesis of submicron size particles of LiMn2O4 in a quaternary microemulsion medium. The precursor obtained from the reaction is heated at different temperatures in the range from 400 to 900 °C. The samples heated at 800 and 900 °C are found to possess pure spinel phase with particle size <200 nm, as evidenced from XRD, SEM, and TEM studies. The electrochemical characterization studies provide discharge capacity values of about 100 mAh g−1 at C/5 rate, and there is a moderate decrease in capacity by increasing the rate of charge–discharge cycling. Studies also include charge–discharge cycling and ac impedance studies in temperature range from −10 to 40 °C. Impedance data are analyzed with the help of an equivalent circuit and a nonlinear least squares fitting program. From temperature dependence of charge-transfer resistance, a value of 0.62 eV is obtained for the activation energy of Mn3+/Mn4+ redox process, which accompanies the intercalation/deintercalation of the Li+ ion in LiMn2O4.  相似文献   

18.
NiSe2 thin film has been successfully fabricated by reactive pulsed laser deposition and was investigated for its electrochemistry with lithium for the first time. The reversible discharge capacities of NiSe2/Li cells cycled between 1.0 V and 3.0 V were found in the range of 314.9–467.5 mA h g−1 during the first 200 cycles. By using ex situ X-ray diffraction, transmission electron microscopy, and selected-area electron diffraction measurements, the intermediates of β-NiSe, and Ni3Se2 were identified during the reversible conversions of NiSe2 into metal nickel and Li2Se. Both cation (nickel) and anion (selenium) in NiSe2 provide the redox active centers in its electrochemical reaction with lithium, indicating one of the features of its lithium electrochemistry. The high reversible capacity and good cycle ability of NiSe2 electrode made it become a promising cathode material for future rechargeable lithium batteries.  相似文献   

19.
In this work, we designed and successfully synthesized an interconnected carbon nanosheet/MoS2/polyaniline hybrid (ICN/MoS2/PANI) by combining the hydrothermal method and in situ chemical oxidative polymerization. The as-synthesized ICNs/MoS2/PANI hybrid showed a “caramel treat-like” architecture in which the sisal fiber derived ICNs were used as hosts to grow “follower-like” MoS2 nanostructures, and the PANI film was controllably grown on the surface of ICNs and MoS2. As a LIBs anode material, the ICN/MoS2/PANI electrode possesses excellent cycling performance, superior rate capability, and high reversible capacity. The reversible capacity retains 583 mA h/g after 400 cycles at a high current density of 2 A/g. The standout electrochemical performance of the ICN/MoS2/PANI electrode can be attributed to the synergistic effects of ICNs, MoS2 nanostructures, and PANI. The ICN framework can buffer the volume change of MoS2, facilitate electron transfer, and supply more lithium inset sites. The MoS2 nanostructures provide superior rate capability and reversible capacity, and the PANI coating can further buffer the volume change and facilitate electron transfer.  相似文献   

20.
A new type of polyphenylene, ionic liquid (IL) 1,3-methylimidazolium hexafluorophosphate substituted, has been prepared by electrodeposition on Au electrode surface via pulse galvanostatic method in 1-butyl-3-methylimidazolium hexafluorophosphate solution. The obtained polymer film had a spherulitic morphology with smallest grains of around 500 nm. Infrared spectrometry revealed that polyphenylene was deposited to a certain extent. The capacitive behavior of the IL substituted polyphenylene was investigated by cyclic voltammetry (CV) and galvanostatic charge–discharge method in 0.2 mol L−1 H2SO4 aqueous solutions or pure IL [bmim]PF6. The specific capacitance of the polymer at the charge–discharge current density of 1 mA cm−2 equaled 206 F g−1 in acidic aqueous solution or 164 F g−1 in [bmim]PF6. Additionally, excellent charge–discharge cycle stability (over 85% value of specific capacitance remained after 600 charge–discharge cycles) and power characteristics of the polymer electrode were observed in both electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号