首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce operators of q-fractional integration through inverses of the Askey–Wilson operator and use them to introduce a q-fractional calculus. We establish the semigroup property for fractional integrals and fractional derivatives. We study properties of the kernel of q-fractional integral and show how they give rise to a q-analogue of Bernoulli polynomials, which are now polynomials of two variables, x and y. As q→1 the polynomials become polynomials in xy, a convolution kernel in one variable. We also evaluate explicitly a related kernel of a right inverse of the Askey–Wilson operator on an L2 space weighted by the weight function of the Askey–Wilson polynomials.  相似文献   

2.
We show some results for the q-Bernoulli and q-Euler polynomials. The formulas in series of the Carlitz's q-Stirling numbers of the second kind are also considered. The q-analogues of well-known formulas are derived from these results.  相似文献   

3.
The aim of this paper was to derive new identities and relations associated with the q‐Bernstein polynomials, q‐Frobenius–Euler polynomials, l‐functions, and q‐Stirling numbers of the second kind. We also give some applications related to theses polynomials and numbers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Recently, the authors introduced some generalizations of the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials (see [Q.-M. Luo, H.M. Srivastava, J. Math. Anal. Appl. 308 (2005) 290-302] and [Q.-M. Luo, Taiwanese J. Math. 10 (2006) 917-925]). The main object of this paper is to investigate an analogous generalization of the Genocchi polynomials of higher order, that is, the so-called Apostol-Genocchi polynomials of higher order. For these generalized Apostol-Genocchi polynomials, we establish several elementary properties, provide some explicit relationships with the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials, and derive various explicit series representations in terms of the Gaussian hypergeometric function and the Hurwitz (or generalized) zeta function. We also deduce their special cases and applications which are shown here to lead to the corresponding results for the Genocchi and Euler polynomials of higher order. By introducing an analogue of the Stirling numbers of the second kind, that is, the so-called λ-Stirling numbers of the second kind, we derive some basic properties and formulas and consider some interesting applications to the family of the Apostol type polynomials. Furthermore, we also correct an error in a previous paper [Q.-M. Luo, H.M. Srivastava, Comput. Math. Appl. 51 (2006) 631-642] and pose two open problems on the subject of our investigation.  相似文献   

5.
The aim of this paper is to introduce and investigate some of the primary generalizations and unifications of the Peters polynomials and numbers by means of convenient generating functions and p‐adic integrals method. Various fundamental properties of these polynomials and numbers involving some explicit series and integral representations in terms of the generalized Stirling numbers, generalized harmonic sums, and some well‐known special numbers and polynomials are presented. By using p‐adic integrals, we construct generating functions for Peters type polynomials and numbers (Apostol‐type Peters numbers and polynomials). By using these functions with their partial derivative eqautions and functional equations, we derive many properties, relations, explicit formulas, and identities including the Apostol‐Bernoulli polynomials, the Apostol‐Euler polynomials, the Boole polynomials, the Bernoulli polynomials, and numbers of the second kind, generalized harmonic sums. A brief revealing and historical information for the Peters type polynomials are given. Some of the formulas given in this article are given critiques and comments between previously well‐known formulas. Finally, two open problems for interpolation functions for Apostol‐type Peters numbers and polynomials are revealed.  相似文献   

6.
In this work we present a derivation for the complete asymptotic expansions of Euler?s q-exponential function and Jackson?s q-gamma function via Mellin transform. These formulas are valid everywhere, uniformly on any compact subset of the complex plane.  相似文献   

7.
The convergence properties of q-Bernstein polynomials are investigated. When q1 is fixed the generalized Bernstein polynomials nf of f, a one parameter family of Bernstein polynomials, converge to f as n→∞ if f is a polynomial. It is proved that, if the parameter 0<q<1 is fixed, then nff if and only if f is linear. The iterates of nf are also considered. It is shown that nMf converges to the linear interpolating polynomial for f at the endpoints of [0,1], for any fixed q>0, as the number of iterates M→∞. Moreover, the iterates of the Boolean sum of nf converge to the interpolating polynomial for f at n+1 geometrically spaced nodes on [0,1].  相似文献   

8.
Main purpose of this paper is to reconstruct generating function of the Bernstein type polynomials. Some properties of this generating functions are given. By applying this generating function, not only derivative of these polynomials but also recurrence relations of these polynomials are found. Interpolation function of these polynomials is also constructed by Mellin transformation. This function interpolates these polynomials at negative integers which are given explicitly. Moreover, relations between these polynomials, the Stirling numbers of the second kind and Bernoulli polynomials of higher order are given. Furthermore some remarks associated with the Bezier curves are given.  相似文献   

9.
Recently, Srivastava et al. introduced a new generalization of the Bernoulli, Euler and Genocchi polynomials (see [H.M. Srivastava, M. Garg, S. Choudhary, Russian J. Math. Phys. 17 (2010) 251-261] and [H.M. Srivastava, M. Garg, S. Choudhary, Taiwanese J. Math. 15 (2011) 283-305]). They established several interesting properties of these general polynomials, the generalized Hurwitz-Lerch zeta functions and also in series involving the familiar Gaussian hypergeometric function. By the same motivation of Srivastava’s et al. [11] and [12], we introduce and derive multiplication formula and some identities related to the generalized Bernoulli type polynomials of higher order associated with positive real parameters a, b and c. We also establish multiple alternating sums in terms of these polynomials. Moreover, by differentiating the generating function of these polynomials, we give a interpolation function of these polynomials.  相似文献   

10.
We consider explicit expansions of some elementary and q-functions in basic Fourier series introduced recently by Bustoz and Suslov. Natural q-extensions of the Bernoulli and Euler polynomials, numbers, and the Riemann zeta function are discussed as a by-product.  相似文献   

11.
By using p-adic q-deformed fermionic integral on ℤ p , we construct new generating functions of the twisted (h, q)-Euler numbers and polynomials attached to a Dirichlet character χ. By applying Mellin transformation and derivative operator to these functions, we define twisted (h, q)-extension of zeta functions and l-functions, which interpolate the twisted (h, q)-extension of Euler numbers at negative integers. Moreover, we construct the partially twisted (h, q)-zeta function. We give some relations between the partially twisted (h, q)-zeta function and twisted (h, q)-extension of Euler numbers.   相似文献   

12.
The main object of this paper is to give analogous definitions of Apostol type (see [T.M. Apostol, On the Lerch Zeta function, Pacific J. Math. 1 (1951) 161-167] and [H.M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000) 77-84]) for the so-called Apostol-Bernoulli numbers and polynomials of higher order. We establish their elementary properties, derive several explicit representations for them in terms of the Gaussian hypergeometric function and the Hurwitz (or generalized) Zeta function, and deduce their special cases and applications which are shown here to lead to the corresponding results for the classical Bernoulli numbers and polynomials of higher order.  相似文献   

13.
One of the purposes of this paper is to construct the twisted q-Euler numbers by using p-adic invariant integral on Zp in the fermionic sense. Moreover, we consider the twisted Euler q-zeta functions and q-l-functions which interpolate the twisted q-Euler numbers and polynomials at a negative integer.  相似文献   

14.
In this paper, a new class of so-called q-adic Chebyshev–Vandermonde-like matrices over an arbitrary non-algebraically closed field is introduced. This class generalizes both the ordinary Chebyshev–Vandermonde-like matrices over the complex field studied earlier by Kailath and Olshevsky [T. Kailath, V. Olshevsky, Displacement structure approach to Chebyshev–Vandermonde and related matrices, Integral Equations Operator Theory 22 (1995) 65–92], and the classical q-adic Vandermonde-like matrices with respect to power basis by Yang and Hu [Z.H. Yang, Y.J. Hu, Displacement structure and fast inversion formulas for q-adic Vandermonde-like matrices, J. Comput. Appl. Math. 176 (2005) 1–14]. Three kinds of displacement structures and consequently, three kinds of fast inversion formulas are presented for this class of matrices by using displacement structure theory method, which generalize the corresponding results for Chebyshev–Vandermonde-like and q-adic Vandermonde-like matrices.  相似文献   

15.
Harmonic numbers and generalized harmonic numbers have been studied since the distant past and involved in a wide range of diverse fields such as analysis of algorithms in computer science, various branches of number theory, elementary particle physics and theoretical physics. Here we aim at presenting further interesting identities about certain finite or infinite series involving harmonic numbers and generalized harmonic numbers by applying an algorithmic method to a known summation formula for the hypergeometric function 5F4(1).  相似文献   

16.
In this paper, we consider the modified q-Bernstein polynomials for functions of several variables on q-Volkenborn integral and investigate some new interesting properties of these polynomials related to q-Stirling numbers, Hermite polynomials and Carlitz’s type q-Bernoulli numbers.  相似文献   

17.
18.
Recently, Srivastava and Pintér proved addition theorems for the generalized Bernoulli and Euler polynomials. Luo and Srivastava obtained the anologous results for the generalized Apostol–Bernoulli polynomials and the generalized Apostol–Euler polynomials. Finally, Tremblay et al. gave analogues of the Srivastava–Pintér addition theorem for general family of Bernoulli polynomials. In this paper, we obtain Srivastava–Pintér type theorems for 2D‐Appell Polynomials. We also give the representation of 2D‐Appell Polynomials in terms of the Stirling numbers of the second kind and 1D‐Appell polynomials. Furthermore, we introduce the unified 2D‐Apostol polynomials. In particular, we obtain some relations between that family of polynomials and the generalized Hurwitz–Lerch zeta function as well as the Gauss hypergeometric function. Finally, we present some applications of Srivastava–Pintér type theorems for 2D‐Appell Polynomials. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The main purpose of this paper is to construct a family of modified p-adic twisted functions, which interpolate the modified twisted q-Bernoulli polynomials and the generalized twisted q-Bernoulli numbers at negative integers. We also give some applications and examples related to these functions and numbers.  相似文献   

20.
We give a formula expressing Bernoulli numbers of the second kind as 2-adically convergent sums of traces of algebraic integers. We use this formula to prove and explain the formulas and conjectures of Adelberg concerning the initial 2-adic digits of these numbers. We also give analogous results for the Nörlund numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号