首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examine the transient forced convection heat transfer from a fixed, semi-infinite, flat plate situated in a fluid which, at large distances, is moving with a constant velocity parallel to the plate. Both the fluid and the plate are initially at a constant temperature and the transients are initiated when the zero heat flux at the plate is suddenly changed to a constant value. The thermal boundary-layer equations are solved using numerical techniques to extend a series which is valid for small times and describe fully the development from the initial unsteady state solution (small times) to the ultimate steady state solution (large time).  相似文献   

2.
Bradean  R.  Ingham  D. B.  Heggs  P. J.  Pop  I. 《Transport in Porous Media》1998,32(3):329-355
The mixed convection caused when a horizontal circular cylinder is suddenly heated is investigated in the situation when the initial flow past the cylinder is uniform and its direction either upwards or downwards. An analytical series solution, which is valid at small times, is obtained using the matched asymptotic expansions technique. A numerical solution, which is valid at all times and for any values of the Rayleigh and Péclet numbers, is also obtained using a fully implicit finite-difference method. Three different regimes, when either the free or forced convection is dominant or when they have the same order of magnitude, are considered. In the free convection dominated regime, two vortices develop near the sides of the cylinder in both situations of an upward or downward external flow. Comparisons between the analytical and numerical results at small times, as well as a detailed discussion of the evolution of the numerical solution are presented. The numerical results obtained for large Rayleigh, Ra, and Péclet Pe, numbers show that a thermal boundary-layer forms adjacent to the cylinder for any value of the ratio Ra/e. The steady state boundary-layer analysis, similar to that performed by Cheng and Merkin, is analysed in comparison to the numerical solution obtained for large values of Ra and Pe at very large times.  相似文献   

3.
Harris  S.D.  Ingham  D.B.  Pop  I. 《Transport in Porous Media》2002,46(1):1-18
In this paper we analyse how the presence of the thermal capacity of a vertical flat plate of finite thickness, which is embedded in a porous medium affects the transient free convection boundary-layer flow. At the time t = 0, the plate is suddenly loaded internally with a constant heat flux rate q, so that a transient boundary-layer flow is initiated adjacent to the plate. Initially, the transient effects due to the imposition of the uniform heat flux rate at the plate are confined to a thin fluid region near to the surface and are described by a small time solution. These effects continue to penetrate outwards and eventually evolve into a new steady state flow. Analytical solutions have been derived for these transient (small time) and steady state (large time) flow regimes, which are then matched by a numerical solution of the full boundary-layer equations. It has been found that the non-dimensional fluid temperature (or fluid velocity) profiles are reduced when the thermal capacity effects, described by a parameter Q *, are reduced. For small values of Q *, the approach of these profiles to their steady state values is monotonic. However, for large values of Q *, the temperature profiles are observed to locally exceed (pass through a maximum value) the final steady state values at certain distances from the plate. In general, the maxima in the temperature profiles increase in size as Q * increases and the time taken to approach the steady state solutions increases significantly.  相似文献   

4.
The problem of unsteady laminar, incompressible free convection above a horizontal semi-infinite flat plate is studied theoretically. It is assumed that for timet<0 the plate is hotter than its surroundings and at timet=0 the plate is suddenly cooled to the same temperature of its surroundings. Three solutions of the momentum and energy equations are obtained, namely
  1. an analytical solution which is valid for small time,
  2. an asymptotic analytical solution which is valid for large time, and
  3. a numerical solution which matches these two limiting analytical solutions.
It is found that the numerical solution matches the small and large time solutions accurately. Finally, the variation of the velocity, temperature, skin friction and heat transfer on the plate with time are discussed.  相似文献   

5.
HARRIS  S. D.  INGHAM  D. B.  POP  I. 《Transport in Porous Media》1997,26(2):205-224
An analysis is made of the transient free convection from a vertical flat plate which is embedded in a fluid-saturated porous medium. It is assumed that for time a steady state temperature or velocity has been obtained in the boundary-layer which occurs due to a uniform flux dissipation rate . Then at time the heat flux on the plate is suddenly changed to and maintained at this value for 0$$ " align="middle" border="0"> . An analytical solution has been obtained for the temperature/velocity field for small times in which the transport effects are confined within an inner layer adjacent to the plate. These effects cause a new steady boundary layer. A numerical solution of the full boundary-layer equations is then obtained for the whole transient from to the steady state, firstly by means of a step-by-step method and then by a matching technique. The transition between the two distinct solution methods is always observed to occur very near to the turning point of the plate surface temperature, a time at which the fluid temperature is close to its steady state profile. The solution obtained using the step-by-step method shows excellent agreement with the small time analytical solution. Results are presented to illustrate the occurrence of transients from both small and large increases and decreases in the levels of existing energy inputs.  相似文献   

6.
Similarity profiles of pressure and saturation are analysed which result from one-dimensional planar withdrawal of fluid from a porous region initially containing a two phase mixture of steam and water. Approximate expressions are derived for the evolution of pressure and saturation profiles, and boundary-layer changes in saturation are identified. The existence of a similarity variable implies that the saturation conditions for the reservoir tend with time either to having both phases flowing; or to a single phase vapour. In particular, the nonlinear nature of the governing equations implies that infinitesimal changes in pressure can produce finite changes in saturation. The two mechanisms responsible for saturation changing with time involve local changes in energy storage in rock and fluid; together with spatial variations in flowing enthalpy. The latter mechanism occurred relatively slowly in the examples treated, and was responsible for boundary-layer formation when one phase was initially immobile. Dimensional analysis reveals that when a boundary layer develops, the underlying equations involve essentially only one dimensionless parameter which is typically small, being associated with the ratio of the energy density of the mobile phase relative to the total energy density.  相似文献   

7.
8.
In this paper the free convection flow through a thin rigid hot sheet moving horizontally out of a slot is considered. It is found that there is a similarity formulation of the boundary-layer equations so that the problem reduces to solving a system of coupled ordinary differential equations with suitable boundary conditions. This system of equations is solved numerically for various values of the Prandtl number,Pr, namely 0.45≤Pr≤10000. It is found that for the flow under the sheet there is a reverse flow region near the sheet for small values ofPr, whilst in the case of the flow above the sheet there is no reverse flow region for any value ofPr we have investigated. For the flow under the sheet an asymptotic behaviour, which is valid near the minimum value of the Prandtl number for which it is possible to obtain a numerical solution, is proposed.  相似文献   

9.
Harris  S. D.  Ingham  D. B.  Pop  I. 《Transport in Porous Media》2000,39(1):97-117
This paper presents an analytical and numerical study of transient free convection from a horizontal surface that is embedded in a fluid-saturated porous medium. It is assumed that for time steady state velocity and temperature fields are obtained in the boundary-layer which occurs due to a uniform flux dissipation rate q 1 on the surface. Then, at the heat flux on the surface is suddenly changed to q 2 and maintained at this value for . Firstly, solutions which are valid for small and large are obtained. The full boundary-layer equations are then integrated step-by-step for the transient regime from the initial unsteady state ( ) until such times at which this forward marching approach is no longer well posed. Beyond this time no valid solutions could be obtained which matched the final solution from the forward integration to the steady state profiles at large times .  相似文献   

10.
In this paper, the unsteady three‐dimensional boundary layer flow due to a stretching surface in a viscous and incompressible micropolar fluid is considered. The partial differential equations governing the unsteady laminar boundary layer flow are solved numerically using an implicit finite‐difference scheme. The numerical solutions are obtained which are uniformly valid for all dimensionless time from initial unsteady‐state flow to final steady‐state flow in the whole spatial region. The equations for the initial unsteady‐state flow are also solved analytically. It is found that there is a smooth transition from the small‐time solution to the large‐time solution. The features of the flow for different values of the governing parameters are analyzed and discussed. The solutions of interest for the skin friction coefficient with various values of the stretching parameter c and material parameter K are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Numerical studies are made of flow and heat transfer characteristics of a pulsating flow in a pipe. Complete time-dependent laminar boundary-layer equations are solved numerically over broad ranges of the parameter spaces, i.e., the frequency parameter β and the amplitude of oscillation A. Recently developed numerical solution procedures for unsteady boundary-layer equations are utilized. The capabilities of the present numerical model are satisfactorily tested by comparing the instantaenous axial velocities with the existing data in various parameters. The time-mean axial velocity profiles are substantially unaffected by the changes in β and A. For high frequencies, the prominent effect of pulsations is felt principally in a thin layer near the solid wall. Skin friction is generally greateer than that of a steady flow. The influence of oscillation on skin friction is appreciable both in terms of magnitude and phase relation. Numerical results for temperature are analyzed to reveal significant heat transfer characteristics. In the downstream fully established region, the Nusselt number either increases or decreases over the steady-flow value, depending on the frequency parameter, although the deviations from the steady values are rather small in magnitude for the parameter ranges computed. The Nusselt number trend is amplified as A increases and when the Prandtl number is low below unity. These heat transfer characteristics are qualitatively consistent with previous theoretical predictions.  相似文献   

12.
This paper deals with strain field near a crack tip in a rubber-like material under plane strain condition. The constitutive relation adopted here is valid for both small and large strain. The asymptotic equations are derived for a shrinking sector and expanding sector. The closed mathematic solution is obtained for the latter while a numerical solution is found for the former. By connecting deformation of the two sectors, the crack tip field character is found.  相似文献   

13.
The formulation and solution of the stationary problem of heat transfer in the neighborhood of the front point of a body at constant temperature in a stream of dissociated air are given in [1]. In [2], the results are given of numerical solution of this problem in the nonstationary formulation; the establishment of a stationary heat transfer regime was established for all the calculated variants. In the present paper, we investigate the stability of stationary heat transfer regimes at the front stagnation point of a body in a stream of dissociated air using the Lyapunov functional method [3, 4] and the method of [2, 5], which is based on the use of Meksyn's method in boundary-layer theory [6, 7]. It is established that an arbitrarily strong growth of the Damköhler number does not lead to instability and multiplicity of the stationary regimes, in contrast to the case when a hot mixture of gases flows over the front point of a thermostat [2, 5, 8]. Numerical solution of the boundary-layer equations for a wide range of Damköhler numbers confirms the results of the approximate qualitative analysis and shows that in a number of cases the time of establishment of the stationary state is a nonmonotonic function of the Damköhler number.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 97–106, September–October, 1979.  相似文献   

14.
The purpose of this study is to implement a new analytical method which is a combination of the homotopy analysis method (HAM) and the Padé approximant for solving magnetohydrodynamic boundary-layer flow. The solution is compared with the numerical solution. Comparisons between the HAM–Padé and the numerical solution reveal that the new technique is a promising tool for solving MHD boundary-layer equations. The effects of the various parameters on the velocity and temperature profiles are presented graphically form. Favorable comparisons with previously published works (Crane, J. Appl. Math. Phys. 21:645–647, 1970, and Vajravelu and Hadjinicolaou, Int. J. Eng. Sci. 35:1237–1244, 1997) are obtained. It is predicted that HAM–Padé can have wide application in engineering problems (especially for boundary-layer and natural convection problems).  相似文献   

15.
The transient problem of coupled heat and mass transfer of a micropolar fluid in magneto‐hydrodynamic free convection from a vertical infinite porous plate with an exponentially decaying heat generating considering the viscous dissipation and ohmic heating effects is studied. Joule heating must be considered when the viscous dissipation and the Prandtl number are large. The non‐dimensional equations for the conservation of mass, momentum, energy and concentration are solved by means a numerical technique based on electric analogy (network simulation method). This method provides the numerical response of the system by running the network in circuit resolution software with the solution to both transient and steady‐state problems at the same time, and its programming does not require manipulation of the sophisticated mathematical software that is inherent in other numerical methods. The effects of the material parameters, viscous dissipation, internal generation and Joule heating on velocity, angular momentum and temperature fields across the boundary layer are investigated. In addition, the skin‐friction coefficient, couple stress coefficient, Nusselt number and Sherwood number are shown in tabular form. The numerical results for velocity and temperature distributions of micropolar fluids are compared with the corresponding flow problems for a Newtonian fluid. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
We study nonlinear resonance in viscous gravity-driven films flowing over undulated substrates. Numerical solution of the full, steady Navier–Stokes equations is used to follow the emergence of the first few free-surface harmonics with increasing wall amplitude, and to study their parametric dependence on film thickness, inertia and capillarity. Bistable resonance is computed for steep enough bottom undulations. As an analytic approach, we apply the integral boundary-layer method and derive an asymptotic equation valid for rather thin films. The analysis recovers the key numerical findings and provides qualitative understanding. It shows that higher harmonics are generated by a nonlinear coupling of the wall with lower-order harmonics of the free surface. It also accounts for bistable resonance, and produces a minimum model whose solution is similar to that of the Duffing oscillator.  相似文献   

17.
This paper describes a method of predicting transient, two-phase flows in channels, and presents predictions for several problems. The model is based on a Lagrangian drift-flux formulation of the equations of mass and energy in which the liquid phase can be subcooled. The advantage of the present model over previous models lies in the solution technique, which yields accurate solutions very inexpensively and without problems related to stability. In the technique used, analytical solutions to the differential equations that are valid over limited time and space intervals are used to construct the global solution. The example problems include subcooled boiling, flow reversals and blowdown transients.  相似文献   

18.
The method of matched asymptotic expansions is employed for investigating the growth of the free convection boundary-layer on a horizontal circular cylinder which is embedded in a porous medium. It is assumed that the Rayleigh number is large, but finite, and the time of investigation is short. It is shown that the solution contains terms that are absent from the solution based on the boundary-layer approximation and that vortices form at both sides of the cylinder. The development of the plume region near the top of the cylinder, as well as the local and average Nusselt numbers, are evaluated and presented in graphical form.  相似文献   

19.
The steady rotation of a disk of infinite radius in a conducting incompressible fluid in the presence of an axial magnetic field leads to the formation on the disk of a three-dimensional axisymmetric boundary layer in which all quantities, in view of the symmetry, depend only on two coordinates. Since the characteristic dimension is missing in this problem, the problem is self-similar and, consequently, reduces to the solution of ordinary differential equations.Several studies have been made of the steady rotation of a disk in an isotropically conductive fluid. In [1] a study was made of the asymptotic behavior of the solution at a large distance from the disk. In [2] the problem is linearized under the assumption of small Alfven numbers, and the solution is constructed with the aid of the method of integral relations. In the case of small magnetic Reynolds numbers the problem has been solved by numerical methods [3,4]. In [5] the method of integral relations was used to study translational flow past a disk. The rotation of a weakly conductive fluid above a fixed base was studied in [6,7], The effect of conductivity anisotropy on a flow of a similar sort was studied approximately in [8], In the following we present a numerical solution of the boundary-layer problem on a disk with account for the Hall effect.  相似文献   

20.
A sharp interface problem arising in the flow of two immiscible fluids, slag and molten metal in a blast furnace, is formulated using a two-dimensional model and solved numerically. This problem is a transient two-phase free or moving boundary problem, the slag surface and the slag–metal interface being the free boundaries. At each time step the hydraulic potential of each fluid satisfies the Laplace equation which is solved by the finite element method. The ordinary differential equations determining the motion of the free boundaries are treated using an implicit time-stepping scheme. The systems of linear equations obtained by discretization of the Laplace equations and the equations of motion of the free boundaries are incorporated into a large system of linear equations. At each time step the hydraulic potential in the interior domain and its derivatives on the free boundaries are obtained simultaneously by solving this linear system of equations. In addition, this solution directly gives the shape of the free boundaries at the next time step. The implicit scheme mentioned above enables us to get the solution without handling normal derivatives, which results in a good numerical solution of the present problem. A numerical example that simulates the flow in a blast furnace is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号