首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cubic ZrW2−xMoxO8 (c-ZrW2−xMoxO8) (x=0-1.3) solid solutions were prepared by a novel polymorphous precursor transition route. X-ray diffraction (XRD) analysis reveals that the solid solutions are single phase with α- and β-ZrW2O8 structure for 0?x?0.8 and 0.9?x?1.3, respectively. The optimum synthesis conditions of ZrWMoO8 are obtained from differential scanning calorimetry-thermal gravimetric analysis (DSC-TGA), XRD and mass loss-temperature/time curves. Following the above experience, the stoichiometric solid solutions of c-ZrW2−xMoxO8 (x=0-1) are obtained within 1 wt% of mass loss. The relationships of lattice parameters (a), phase transition temperatures (Tc) and instantaneous coefficients of thermal expansion (αi) against the content x of Mo are discussed based on the variation of order degree parameters of ZrW2−xMoxO8.  相似文献   

2.
Polycrystalline samples of the Lu1−xLaxMn2O5 solid solution system were synthesized under moderate conditions for compositions with x up to 0.815. Due to the large difference in ionic size between Lu3+ and La3+, significant changes in lattice parameters and severe lattice strains are present in the solid solution. This in turn leads to the composition dependent thermal stability and magnetic properties. It is found that the solid solution samples with x≤0.487 decompose at a single well defined temperature, while those with x≥0.634 decompose over a temperature range with the formation of intermediate phases. For the samples with x≤0.487, the primary magnetic transition occurs below 40 K, similar to LuMn2O5 and other individual RMn2O5 (R=Bi, Y, and rare earth) compounds. In contrast, a magnetic phase with a 200 K onset transition temperature is dominant in the samples with x≥0.634.  相似文献   

3.
A careful TEM and XRD study of the (Ba1−xLax)2In2O5+x, 0x0.6, ‘defect-perovskite’-type solid solution has been carried out. A well-defined structural phase transition is shown to occur between x=0.1 and 0.2 from the orthorhombic brownmillerite structure type on the low x side to a multiple twinned, tetragonal 1×1×2 perovskite-related superstructure phase on the high x side at x=0.2. This phase transition correlates with an important phase transition previously observed in electrical conductivity versus temperature measurements. The existence of additional satellite reflections close to the regions of reciprocal space was found to be typical of all (Ba1−xLax)2In2O5+x specimens, although their intensity relative to the parent Bragg reflections systematically reduces as x increases. As x increases beyond 0.2, the -type satellite reflections initially become weaker and rather more diffuse for x=0.3 before splitting into pairs of rather weak and somewhat diffuse incommensurate satellite reflections for x=0.4 and beyond. An interpretation in terms of oxygen vacancy ordering and associated structural relaxation is given. Additional structured diffuse scattering is also observed and a tentative explanation in terms of Ba/La ordering and associated local strain distortions put forward.  相似文献   

4.
Zr1−xLnxW2O8−x/2 solid solutions (Ln=Eu, Er, Yb) of different substitution fractions x have been synthesized. Their X-ray diffraction (XRD) patterns have been indexed and lattice parameters calculated based on the α-ZrW2O8 structure. The coefficients of thermal expansion (CTEs) of these solid solutions were estimated to be −10.3×10−6 K−1 in temperature range of 30-100 °C. The solubility of lanthanide ions in these solid solutions decreases linearly with the increase in the radius of substituted lanthanide ions. Based on the concentration dependence of phase transition temperatures, a novel method for determination of solubility of the lanthanide ions in Zr1−xLnxW2O8−x/2 solid solutions has been developed. This method seems to be more sensitive as compared with that based on XRD technique.  相似文献   

5.
Composition-induced structural phase changes across the high temperature, fast oxide ion conducting (Ba1−xLax)2In2O5+x, 0?x?0.6, system have been carefully analysed using hard mode infrared (IR) powder absorption spectroscopy, X-ray powder diffraction and electron diffraction. An orthorhombic brownmillerite to three-dimensionally disordered cubic perovskite phase transition in this system is signalled by a drastic change in slope of both wavenumber and average line widths of IR spectra as a function of composition. Some evidence is found for the existence of an intermediate tetragonal phase (previously reported to exist from electron diffraction data) around x∼0.2. The new spectroscopic data have been used to compare microscopic and macroscopic strain parameters arising from variation in composition. The strain and spectroscopic data are consistent with first-order character for the tetragonal→orthorhombic transition, while the cubic→tetragonal transition could be continuous. Differences between the variation with composition of spectral parameters and of macroscopic strain parameters are consistent with a substantial order/disorder component for the transitions. There is also evidence for precursor effects within the cubic structure before symmetry is broken.  相似文献   

6.
The magnetic and electric transport properties of La1−xBaxCoO3 (0<x≤0.50) have been studied systematically. Two effects of substitution divalent ions on the spin-state transition of Co3+ have been differentiated for the substitution of Ba2+ for La3+ in La1−xBaxCoO3. The first is the transition from low-spin state to high-spin state due to lattice expansion, and the second is the transition from low-spin state to intermediate-spin state caused by the strong hybridization between ligand (oxygen) 2p and Co 3d orbital with introduction of holes in the oxygen 2p orbital. Based on the two different spin-state transition mechanisms and experimental results, a phase separation model has been developed and a very detailed magnetic and electric phase diagram of La1−xBaxCoO3 has been constructed.  相似文献   

7.
Powder XRD-analysis and thermo-mechanical analysis on sintered TiO2-WO3-ZrO2 mixtures revealed the formation of Zr1−xTixW2O8 solid solutions. A noticeable decrease in unit cell parameter ‘a’ and in the order-disorder transition temperature could be seen in the case of Zr1−xTixW2O8 solid solutions.Studies performed on other ZrW2O8 solid solutions have attributed an increase in phase transition temperature to a decrease in free lattice volume, whereas a decrease in phase transition temperature was suggested to be due to the presence of a more disordered state. Our studies indicate that the phase transition temperature in our materials is strongly influenced by the bond dissociation energy of the substituting ion-oxygen bond. A decrease in bond strength may compensate for the effect of a decrease in lattice free volume, lowering the phase transition temperature as the degree of substitution by Ti4+ increases. This hypothesis is proved by differential scanning calorimetry.  相似文献   

8.
The solid solubility between LaNbO4 and LaTaO4 was investigated by X-ray diffraction, and a two-phase region was observed in the composition region LaNb1−xTaxO4 where 0.4?x?0.8. Single-phase LaNb1−xTaxO4 (0?x?0.4) with the monoclinic Fergusonite structure at ambient temperature, was observed to transform to a tetragonal Scheelite structure by in-situ high-temperature X-ray diffraction, and the phase transition temperature was shown to increase with increasing Ta-content. This ferroelastic to paraelastic second-order phase transition was described by Landau theory using spontaneous strain as an order parameter. The thermal expansion of LaNb1−xTaxO4 (0?x0.4) was shown to be significantly higher below the phase transition than above. Single-phase LaNb1−xTaxO4 (0.8?x?1) with another monoclinic crystal structure at ambient temperature was shown to transform to an orthorhombic crystal structure by X-ray diffraction and differential scanning calorimetry. The phase transition temperature was observed to decrease with decreasing Ta-content. Finally, orthorhombic LaTaO4 could also be transformed to monoclinic LaTaO4 at ambient temperature by applying a uniaxial pressure of 150-170 MPa, reflecting the lower molar volume of monoclinic LaTaO4.  相似文献   

9.
The phase relations in the system In2O3–TiO2–MgO at 1100 and 1350°C are determined by a classical quenching method. In this system, there are four pseudobinary compounds, In2TiO5, MgTi2O5 (pseudobrookite type), MgTiO3 (ilmenite type), and Mg2TiO4 (spinel type) at 1100°C. At 1350°C, in addition to these compounds there exist a spinel-type solid solution Mg2−xIn2xTi1−xO4 (0≤x≤1) and a compound In6Ti6MgO22 with lattice constants a=5.9236(7) Å, b=3.3862(4) Å, c=6.3609(7) Å, β=108.15(1)°, and q=0.369, which is isostructural with the monoclinic In3Ti2FeO10 in the system In2O3–TiO2–MgO. The relation between the lattice constants of the spinel phase and the composition nearly satisfies Vegard's law. In6Ti6MgO22 extends a solid solution range to In20Ti17Mg3O67 with lattice constants of a=5.9230(5) Å, b=3.3823(3) Å, c=6.3698(6) Å, β=108.10(5)°, and q=0.360. The distributions of constituent cations in the solid solutions are discussed in terms of their ionic radius and site preference effect.  相似文献   

10.
采用水热法,在较低温度下合成了系列Bi2Mo1-xWxO6固溶体。结果表明,W的替代抑制了固溶体的晶粒生长,导致了较小的晶粒尺寸。随着x的增加,红外光谱中840cm-1处M-O键的振动频率νM-O有规律地向低频率方向移动,表明Mo6+离子逐步被W6+替代,生成了无限互溶的固溶体。光吸收性能研究表明,随着W6+逐步替代Mo6+,带隙出现了先降后升的趋势,x=0.4时带隙最小。而固溶体的光催化性能随着x的增加,出现了先增后减的趋势,x=0.4时光催化活性最高。此外,含W样品的光催化活性高于Bi2MoO6。这与固溶体的带隙、带结构和晶粒尺寸变化有关。  相似文献   

11.
Various compositions of solid solutions K3P(Mo1−xWx)12O40 (0?x?1) were prepared using two solid state synthetic routes. The crystallite size was determined by linewidth refinements of X-ray diffraction patterns using the Warren-Averbach method, and the grain size distribution by laser scattering experiments. Optical properties were determined by diffuse reflectance measurements in the UV-visible range. The optical gap Eg was found to increase exponentially from ∼2.5 to ∼3.30 eV with increasing x, and is systematically shifted to a higher energy when the grain size decreases. The relation between Eg and x was analyzed by calculating the HOMO-LUMO gaps of the [P(Mo1−xWx)12O40]3− anions on the basis of tight-binding electronic structure calculations.  相似文献   

12.
Differential scanning calorimetry and high temperature oxide melt solution calorimetry are used to study enthalpy of phase transition and enthalpies of formation of Cu2P2O7 and Cu3(P2O6OH)2. α-Cu2P2O7 is reversibly transformed to β-Cu2P2O7 at 338–363 K with an enthalpy of phase transition of 0.15 ± 0.03 kJ mol−1. Enthalpies of formation from oxides of α-Cu2P2O7 and Cu3(P2O6OH)2 are −279.0 ± 1.4 kJ mol−1 and −538.8 ± 2.7 kJ mol−1, and their standard enthalpies of formation (enthalpy of formation from elements) are −2096.1 ± 4.3 kJ mol−1 and −4302.7 ± 6.7 kJ mol−1, respectively. The presence of hydrogen in diphosphate groups changes the geometry of Cu(II) and decreases acid–base interaction between oxide components in Cu3(P2O6OH)2, thus decreasing its thermodynamic stability.  相似文献   

13.
Differential thermal analysis coupled to temperature-controlled diffraction have given evidence of a topological metastability phenomenon in an extended compositional range of the La2−xNdxMo2O9 solid solution. A metastable-stable phase diagram is proposed for this series of LAMOX-type fast oxide-ion conductors. In the Nd range 0<x?0.35, a freezing of the oxygen/vacancy disorder of the β-phase at ambient temperature can be achieved through a splat-quenching to water-ice mixture or/and shaping/sintering into pellet. In the intermediate 0.4?x?1.2 range, the amount of β-metastable phase grows upon substitution for powders. The negative impact of β-metastable to α phase transition on conductivity tends to disappear through the partial stabilization of the β phase by shaping/sintering.  相似文献   

14.
The temperature-programmed reduction process of two types of industrial ammonia-synthesis catalysts, A110 and ZA-5, which are, respectively, based on Fe3O4 and Fe1−xO precursors, were studied by in situ X-ray power diffraction (XRD). It has been found that the ZA-5 has lower reduction temperature and faster reduction rate, and its active phase α-Fe possesses a higher value of lattice microstrain than A110. The simulation based on Rietveld refinement has also shown that the shape of α-Fe grain of ZA-5 has a mixed shape of cube and sphere with more exposing (111) and (211) planes, while that of A110 looks like a concave cube with more exposing (110) planes. Based on the results obtained, a growth model of α-Fe during the reduction of Fe3O4- and Fe1−xO-based ammonia-synthesis catalysts is proposed, and the origins for the activity difference has been also discussed.  相似文献   

15.
The two-phase region in the system 2(ZnSe)x(CuInSe2)1−x covers the chemical composition range 0.10<x?0.36, in which a tetragonal and a cubic phase are coexisting. The structural relation between both phases was determined by selected area diffraction (SAD) and transmission electron microscopy (TEM). Both crystal structures are very similar and the extremely small mismatch of the lattice constants of the tetragonal phase and the embedding cubic matrix phase allows for the grain boundaries to be virtually strain-free and, therefore, without notable dislocations. The tetragonal phase forms grains of flat discus-like shape in the ambient cubic matrix, with the short discus axis parallel to the tetragonal c-axis. TEM experiments proved that the discus-shaped tetragonal particles are collinear with the (100)cub, (010)cub and (001)cub planes of the cubic phase. Cooling and annealing experiments revealed a near-equilibrium state only to be realized for small cooling rates less than 2 K/h and/or for a long-time annealing with subsequent rapid quenching. Only then there will be no cation ordering in both, the tetragonal domains and the parental cubic matrix phase. If, however, the samples are kept in a state far away from the equilibrium condition both phases reveal Stannite-type cation ordering. Within the composition range of 0?x?0.10 only tetragonal 2(ZnSe)x(CuInSe2)1−x-alloys exist. At concentration rates above 36 mol% 2(ZnSe) only cubic structured solid solutions of ZnSe and CuInSe2 are found to be stable. However, in the range 36 mol% to about 60 mol% 2(ZnSe) tiny precipitates with Stannite-like structure exist, too.  相似文献   

16.
The KxBa1−xGa2−xGe2+xO8 (x=0.6−1.0) solid solutions undergo a structural phase transition that has a significant effect on their sintering behavior and their microwave dielectric properties. The crystal structures of both phases within the solid-solution region were determined by the Rietveld method using powder X-ray diffraction data. We found that the low-temperature-stable phase is isostructural with the pseudo-orthorhombic KGaGe3O8 (space group P21/a), while the high-temperature-stable phase has a typical monoclinic feldspar structure (space group C2/m). Due to the topological differences between the two structures, the T-O bonds within the tetrahedra must be partially recombined to make a new framework, which causes an endothermic effect during the P21/a to C2/m phase transition. The correlation between the crystal structures, the microwave dielectric properties and the phase-transition behaviors were discussed in terms of the crystallographic features, the lattice parameters, and the strain-induced anisotropic peak-broadening.  相似文献   

17.
We measured the positron lifetime in perovskite manganites Pr1−xCaxMnO3 (x=0.3, 0.5). Two lifetime components were observed for each compound; they were attributed to the annihilation of free positrons and positrons trapped at the A-site vacancies. The positron lifetime at the A-site vacancies changed significantly during the antiferromagnetic transition in both the compounds, whereas it was constant around the charge-ordering transition. This change indicates that the electron distribution at the vacancies changed possibly due to the change in the electron distribution of neighboring oxygen atoms. This result indicates that positron lifetime measurements can provide unique information on electronic states during a spin-related phase transition in various oxide materials.  相似文献   

18.
Zn7Sb2O12 forms a full range of Co-containing α solid solutions, Zn7−xCoxSb2O12, with an inverse-spinel structure at high temperature. At low temperatures for x<2, the solid solutions transform into the low temperature β-polymorph. For x=0, the βα transition occurs at 1225±25 °C; the transition temperature decreases with increasing x. At high x and low temperatures, α solid solutions are formed but are non-stoichiometric; the (Zn+Co):Sb ratio is >7:2 and the compensation for the deficiency in Sb is attributed to the partial oxidation of Co2+ to Co3+. From Rietveld refinements using ND data, Co occupies both octahedral and tetrahedral sites at intermediate values of x, but an octahedral preference attributed to crystal field stabilisation, causes the lattice parameter plot to deviate negatively from the Vegard's law. Sub-solidus compatibility relations in the ternary system ZnO-Sb2O5-CoO have been determined at 1100 °C for the compositions containing ?50% Sb2O5.  相似文献   

19.
n-Type (Bi2Te3)0.9–(Bi2−xCuxSe3)0.1 (x=0–0.2) alloys with Cu substitution for Bi were prepared by spark plasma-sintering technique and their structural and thermoelectric properties were evaluated. Rietveld analysis reveals that approximate 9.0% of Bi atomic sites are occupied by Cu atoms and less than 4.0 wt% second phase Cu2.86Te2 precipitated in the Cu-doped parent alloys. Measurements show that an introduction of a small amount of Cu (x0.1) can reduce the lattice thermal conductivity (κL), and improve the electrical conductivity and Seebeck coefficient. An optimal dimensionless figure of merit (ZT) value of 0.98 is obtained for x=0.1 at 417 K, which is obviously higher than those of Cu-free Bi2Se0.3Te2.7 (ZT=0.66) and Ag-doped alloys (ZT=0.86) prepared by the same technologies.  相似文献   

20.
In order to elucidate the correlation between the relaxor type of phase transition and the percent of the A and B site substitution in the Ba1−xNaxTi1−xNbxO3 solid solution, the dielectric permittivity was carried out in the temperature range 80–600 K. All ceramics of these solid solutions present a ferroelectric–paraelectric phase transition with relaxor and classical character depending on the value of x. With increasing x the three phase transition of pure BaTiO3 are pinched into one rounded dielectric peak, and there is evidence for Vogel–Fulcher type relaxational freezing. Raman spectra of the x=0.3 and x=0.7 compositions taken at various temperatures and measured over the wavenumber range 100–1200 cm−1 confirm that the first order scattering is dominant in phonon bands resulting from both ordered region and disordered matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号