首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Role of self-inductance in superconducting quantum interference device (SQUID) charge qubit is considered. It is found that when an SQUID charge qubit is coupled to a quantum LC resonator, the SQUID voltage operator equation is modified in accompanying with the modification of operator Faraday equation describing the inductance. It is shown that when the extra energy is applied to the junction, the mean phase will be squeezed according to a damping factor.  相似文献   

2.
刘杰  高鹤  李刚  李正伟  张颖珊  刘建设  陈炜 《中国物理 B》2017,26(9):98501-098501
The superconducting quantum interference device(SQUID) amplifier is widely used in the field of weak signal detection for its low input impedance, low noise, and low power consumption. In this paper, the SQUIDs with identical junctions and the series SQUIDs with different junctions were successfully fabricated. The Nb/Al-AlO_x/Nb trilayer and input Nb coils were prepared by asputtering equipment. The SQUID devices were prepared by a sputtering and the lift-off method.Investigations by AFM, OM and SEM revealed the morphology and roughness of the Nb films and Nb/Al-AlO_x/Nb trilayer.In addition, the current–voltage characteristics of the SQUID devices with identical junction and different junction areas were measured at 2.5 K in the He~3 refrigerator. The results show that the SQUID modulation depth is obviously affected by the junction area. The modulation depth obviously increases with the increase of the junction area in a certain range. It is found that the series SQUID with identical junction area has a transimpedance gain of 58 ? approximately.  相似文献   

3.
At an extremely low temperature of 20 mK, we measured the loop current in a tunable rf superconducting quantum interference device (SQUID) with a dc-SQUID. By adjusting the magnetic flux applied to the rf-SQUID loop (Φ f ) and the small dc-SQUID (Φ cjj f ), respectively, the potential shape of the system can be fully controlled in situ. Variation in the transition step and overlap size in the switching current with a barrier flux bias are analyzed, from which we can obtain some relevant device parameters and build a model to explain the experimental phenomenon.  相似文献   

4.
We have studied the basic characteristics of a radio frequency superconducting quantum interference device (rf SQUID) involving two Josephson junctions connected in series, the case for the widely used grain boundary junction (GBJ) rf SQUID. It is found that the SQUID properties are determined mainly by the weaker junction when the critical current of the weaker junction is much lower than that of the other junction. Otherwise, the effect of the other junction is not negligible. We also find that only when the hysteresis parameter β is less than 1-α, where α is the critical current ratio of the two junctions, will the SQUID operate in the nonhysteretic mode.  相似文献   

5.
At an extremely low temperature of 20 mK, we measured loop current in a tunable rf superconducting quantum interference device (SQUID) with a dc-SQUID. By adjusting the magnetic flux applied to the rf-SQUID loop (Φf) and the small dc-SQUID (Φfcjj), respectively, the potential shape of the system can be fully controlled in situ. Variations of transition step and overlap size in switching current with the barrier flux bias are analyzed, from which we can obtain some relevant device parameters and built up a model to explain the experimental phenomenon.  相似文献   

6.
We investigate the experimental feasibility of realizing quantum information transfer (QIT) and entanglement with SQUID qubits in a microwave cavity via dark states. Realistic system parameters are presented. Our results show that QIT and entanglement with two-SQUID qubits can be achieved with a high fidelity. The present scheme is tolerant to device parameter nonuniformity. We also show that the strong coupling limit can be achieved with SQUID qubits in a microwave cavity. Thus, cavity-SQUID systems provide a new way for production of nonclassical microwave source and quantum communication.  相似文献   

7.
MgO衬底上的YBa2Cu3O7-δ(YBCO)台阶边沿型约瑟夫森结(台阶结)在高灵敏度高温超导量子干涉器(superconducting quantum interference device,SQUID)等超导器件研制方面具有重要的应用价值和前景.本文对此类YBCO台阶结的制备和特性进行了研究.首先利用离子束刻蚀技术和两步刻蚀法在MgO(100)衬底上制备陡度合适、边沿整齐的台阶,然后利用脉冲激光沉积法在衬底上生长YBCO超导薄膜,进而利用紫外光刻制备出YBCO台阶结.在结样品的电阻-温度转变曲线中,观测到低于超导转变温度时的电阻拖尾现象,与约瑟夫森结的热激活相位滑移理论一致.伏安特性曲线测量表明结的行为符合电阻分路结模型,在超导转变温度TC附近结的约瑟夫森临界电流密度TC随温度T呈现出(TC-T)^2的变化规律,77 K时JC值为1.4×10^5 A/cm^2.利用制备的台阶结,初步制备了YBCO射频高温超导SQUID,器件测试观察到良好的三角波电压调制曲线,温度77 K、频率1 kHz时的磁通噪声为250μΦ0/Hz^1/2.本文结果为进一步利用MgO衬底YBCO台阶结研制高性能的高温超导SQUID等超导器件奠定了基础.  相似文献   

8.
We have measured the ground state of ferromagnetic Josephson junctions using a single dc SQUID (superconducting quantum interference device).We show that the Josephson coupling is either positive (0 coupling) or negative (pi coupling) depending on the ferromagnetic layer thickness. As expected, the sign change of the Josephson coupling is observed as a shift of half a quantum flux in the SQUID diffraction pattern when operating in the linear limit.  相似文献   

9.
郑东宁 《物理学报》2021,(1):164-177
超导现象是一种宏观量子现象.磁通量子化和约瑟夫森效应是两个最能体现这种宏观量子特性的物理现象.超导量子干涉器件(superconducting quantum interference device,SQUID)是利用这两个特性而形成的超导器件.SQUID器件在磁信号灵敏探测方面具有广泛的应用.本文简要介绍低温超导和高温超导SQUID器件的相关背景和发展现状以及应用领域.  相似文献   

10.
We apply a feedback cooling technique to simultaneously cool the three electromechanical normal modes of the ton-scale resonant-bar gravitational wave detector AURIGA. The measuring system is based on a dc superconducting quantum interference device (SQUID) amplifier, and the feedback cooling is applied electronically to the input circuit of the SQUID. Starting from a bath temperature of 4.2 K, we achieve a minimum temperature of 0.17 mK for the coolest normal mode. The same technique, implemented in a dedicated experiment at subkelvin bath temperature and with a quantum limited SQUID, could allow to approach the quantum ground state of a kilogram-scale mechanical resonator.  相似文献   

11.
We propose a single shot quantum measurement to determine the state of a Josephson charge quantum bit (qubit). The qubit is a Cooper pair box and the measuring device is a two junction superconducting quantum interference device (dc SQUID). This coupled system exhibits a close analogy with a Rydberg atom in a high Q cavity, except that in the present device we benefit from the additional feature of escape from the supercurrent state by macroscopic quantum tunneling, which provides the final readout. We test the feasibility of our idea against realistic experimental circuit parameters and by analyzing the phase fluctuations of the qubit.  相似文献   

12.
电子器件散粒噪声测试方法研究   总被引:3,自引:0,他引:3       下载免费PDF全文
陈文豪  杜磊  庄奕琪  包军林  何亮  陈华  孙鹏  王婷岚 《物理学报》2011,60(5):50704-050704
本文分析了超导量子干涉器(SQUID)和超导-绝缘-超导(SIS)约瑟夫森结散粒噪声测试方法的应用局限性,提出了常规器件的散粒噪声测试方案.针对常规电子器件散粒噪声特性,研究了噪声测试基本条件,并建立了低温测试系统.通过采用双层屏蔽结构和超低噪声前置放大器,实现了较好的电磁干扰屏蔽和极低的背景噪声.在10 K温度下对常规二极管散粒噪声进行了测试,通过理论和测试结果对比分析,验证了测试系统的准确和可信性. 关键词: 散粒噪声 电子器件 噪声测试  相似文献   

13.
SHI Tao  SONG Zhi 《理论物理通讯》2007,48(6):1003-1008
We revisit a theoretical scheme to create quantum entanglement of two three-level superconducting quantum interference devices (SQUIDs) with the help of an auxiliary SQUID. In this scenario, two three-level systems are coupled to a quantized cavity field and a classical external field and thus form dark states. The quantum entanglement can be produced by a quantum measurement on the auxiliary SQUID. Our investigation emphasizes the quantum effect of the auxiliary SQUID. For the experimental feasibility and accessibility of the scheme, we calculate the time evolution of the whole system including the auxiliary SQUID. To ensure the efficiency of generating quantum entanglement, relations between the measurement time and dominate parameters of the system are analyzed according to detailed calculations.  相似文献   

14.
We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit--leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-type of conductance formula, which gives the photonic heat current through an arbitrary circuit element coupled to two dissipative reservoirs at finite temperatures. As an illustration we present an exact solution for the case when the intermediate circuit can be described as an electromagnetic resonator. We discuss in detail how the MPHT can be implemented experimentally in terms of a flux-controlled SQUID circuit.  相似文献   

15.
WANG Bo 《理论物理通讯》2008,49(6):1599-1602
We propose a potential scheme of preparing Schrödinger-cat state of the cavity mode by placing an rf-superconducting quantum interference device (rf-SQUID) in a single-mode microwave cavity. By properly adjusting the detuning and the strength regarding the radiation fields, we show how to generate single-mode Schrödinger-cat state. Generalizing this method we discuss the generation of the engtangled coherent states. The experimental feasibility of our scheme is discussed under consideration of the cavity decay.  相似文献   

16.
Superconducting quantum interference devices (SQUIDs) are very well suited for experimental investigations of ratchet effects. This is due to the periodicity of the Josephson coupling energy with respect to the phase difference δ of the superconducting macroscopic wave function across a Josephson junction. We show first that, within the resistively and capacitively shunted junction model, the equation of motion for δ is equivalent to the motion of a particle in the so-called tilted washboard potential, and we derive the conditions which have to be satisfied to build a ratchet potential based on asymmetric dc SQUIDs. We then present results from numerical simulations and experimental investigations of dc SQUID ratchets with critical-current asymmetry under harmonic excitation (periodically rocking ratchets). We discuss the impact of important properties like damping or thermal noise on the operation of SQUID ratchets in various regimes, such as adiabatically slow or fast nonadiabatic excitation. Received: 22 November 2001 / Accepted: 14 January 2002 / Published online: 22 April 2002  相似文献   

17.
在多通道超导量子干涉器件(SQUID)磁探测系统中,磁场电压转换系数(∂ B/∂ V)是系统的一个重要参数由于SQUID器件和读出电路之间不可避免地存在差异性因此对传感器系统进行系统标定(每个通道的单独标定)显得十分重要本文采用(PCB) 板印制圆形线圈对36通道心磁系统进行标定,并与传统的亥姆霍兹方形线圈产生均匀场的标定方法进行比较结果显示PCB圆形线圈的标定结果 在1.46–1.73 pT·mV-1 之间,亥姆霍兹方形线圈标定的结果大都在1.56–1.64 pT·mV-1之间,结果基本一致. 关键词: 超导量子干涉器件 磁探测 磁场-电压转换系数 系统标定  相似文献   

18.
史建新  许伟伟  孙国柱  陈健  康琳  吴培亨 《中国物理 B》2017,26(4):47402-047402
We experimentally demonstrate the observation of macroscopic resonant tunneling(MRT) phenomenon of the macroscopic distinct flux states in a radio frequency superconducting quantum interference device(rf-SQUID) under a singlecycle sinusoidal driving.The population of the qubit exhibits interference patterns corresponding to resonant tunneling peaks between states in the adjacent potential wells.The dynamics of the qubit depends significantly on the amplitude,frequency,and initial phase of the driving signal.We do the numerical simulations considering the intra-well and interwell relaxation mechanism,which agree well with the experimental results.This approach provides an effective way to manipulate the qubit population by adjusting the parameters of the external driving field.  相似文献   

19.
《Current Applied Physics》2020,20(5):680-685
We report the fabrication and characterization of superconducting quantum interference devices (SQUIDs) made of Sb-doped Bi2Se3 topological insulator (TI) nanoribbon (NR) contacted with PbIn superconducting electrodes. When an external magnetic field was applied along the NR axis, the TI NR exhibited periodic magneto-conductance oscillations, the so-called Aharonov-Bohm oscillations, owing to one-dimensional subbands. Below the superconducting transition temperature of PbIn electrodes, we observed supercurrent flow through TI NR-based SQUID. The critical current periodically modulates with a magnetic field perpendicular to the SQUID loop, revealing that the periodicity corresponds to the superconducting flux quantum. Our experimental observations can be useful to explore Majorana bound states (MBS) in TI NR, promising for developing topological quantum information devices.  相似文献   

20.
We develop superconducting quantum interference device(SQUID) probes based on 3D nano-bridge junctions for the scanning SQUID microscopy. The use of these nano-bridge junctions enables imaging in the presence of a high magnetic field. Conventionally, a superconducting ground layer has been employed for better magnetic shielding. In our study, we prepare a number of scanning SQUID probes with and without a ground layer to evaluate their performance in external magnetic fields. The devices show the improved magnetic modulation up to 1.4 T. It is found that the ground layer reduces the inductance, and increases the modulation depth and symmetricity of the gradiometer design in the absence of the field. However, the layer is not compatible with the use of the scanning SQUID probe in the field because it decreases its working field range. Moreover, by adding the layer, the mutual inductance between the feedback coil and the SQUID also decreases linearly as a function of the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号