首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical absorption spectra of flash-evaporated polycrystalline thin films of CuInTe2 are measured in the photon energy range from 0.5 to 3.0 eV. A gap energy in the range from 0.96 to 0.99 eV and a spin-orbit splitting of the valence band of 0.61 ± 0.03 eV are derived from the spectra. It is found that the spectra are considerably influenced by grain boundary effects.  相似文献   

2.
Optical absorption spectra in the photon energy range from 0.03 to 1.1 eV and photoreflectance spectra in the range of the fundamental edge are measured on p-type CuInSe2 single crystals. Besides a dominant contribution to the absorption coefficient due to intervalence band transitions below about 0.75 eV the spectra revealed five additional structures that can be ascribed to defect induced optical transitions with characteristic energies between 0.48 and 0.72 eV. Based on a comparison of the near-edge optical absorption and photoreflectance spectra a shallow defect (donor or acceptor) with an ionisation energy of about 46 meV was identified.  相似文献   

3.
Photoluminescence (PL) spectra of Tl4Ga3InSe8 layered crystals grown by Bridgman method have been studied in the wavelength region of 600‐750 nm and in the temperature range of 17‐68 K. A broad PL band centered at 652 nm (1.90 eV) was observed at T = 17 K. Variations of emission band has been studied as a function of excitation laser intensity in the 0.13 to 55.73 mW cm‐2 range. Radiative transitions from donor level located at 0.19 eV below the bottom of conduction band to shallow acceptor level located at 0.03 eV above the top of the valence band were suggested to be responsible for the observed PL band. From X‐ray powder diffraction and optical absorption study, the parameters of monoclinic unit cell and the energy of indirect band gap were determined, respectively. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Polycrystalline Zn3N2 films are prepared on Si and quartz glass substrates by RF magnetron sputtering at room temperature. The structural and optical properties are studied by X‐ray diffraction and double beam spectrophotometer, respectively. X‐ray diffraction indicates that the Zn3N2 films deposited on Si and quartz glass substrates both have a preferred orientation in (321) and (442), also are cubic in structure with the lattice constant a=0.9847 and 0.9783 nm, respectively. The absorption coefficients as well as the film thickness are calculated from the transmission spectra, and their dependence on photon energy is examined to determine the optical band gap. Zn3N2 is determined to be an indirect‐gap semiconductor with the band gap of 2.11(2) eV. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The electrical and optical properties of CuGaTe2 single crystals were investigated by resistivity and Hall effect measurements in the temperatur range T = 77… 300 K and optical transmission measurements in the temperature range T = 20… 300 K at photon energies hν = 1.15…1.50 eV. All samples were p-type conducting due to shallow acceptors with ionization energies EA1 ≈︁ 10−3 eV and concentrations NA1 ≈︁ p = (2…4). 1018 cm−3. The absorption spectra could be described by simultaneous consideration of acceptor - to - conduction band transitions with EA2 = 360 meV and NA2 ≈︁ 1022 cm−3 and valence band - to - conduction band transitions with EG = 1.24 eV at room temperaure. The temperature coefficient of the fundamental edge is dEG/dT = −4.0. 10−4 eV/K. The results are discussed with regard to some general trends found in the Cu-III–VI2 compounds.  相似文献   

6.
Presented in this paper are the results obtained from the investigation of absorption edge and photoconductivity of layered Ga2In4S9 single crystals as well as from the investigation of the photovoltaic effect in Pt—Ga2In4S9 surface-barrier structures. We determined the magnitude of the direct band gap to be Eg = 2.72 eV and the position of the sensitizing centres to be ≈︁0.15 eV above the valence band top. In the regions of the photon energies smaller than Eg the absorption band edge is described by an exponential dependence with a temperature independent slope.  相似文献   

7.
8.
采用第一性原理方法研究应变对Mo2C(001)表面电子结构及光学性质的影响。研究表明,在应变作用下Mo2C(001)表面均为间接带隙半导体,带隙随着压应变和拉应变的增加而减小。当应变为-20%时,Mo2C(001)表面由间接带隙半导体转变为金属性质。当应变为-20%、-15%、-10%、-5%、0%、5%、10%、15%、20%时,其带隙分别为0 eV、0.162 eV、0.376 eV、0.574 eV、0.696 eV、0.708 eV、0.604 eV、0.437 eV、0.309 eV。带隙变化的原因主要是Mo 4p、4d、5s态电子和C 3p态电子对应变敏感,在应变作用下受激发,活性增强导致价带顶在布里渊区G、A、L、M点之间变化,导带底在K、H点之间变化;当应变由-15%逐渐变化到20%时,吸收谱的第一峰逐渐减弱,并且第一峰对应的光电子能量减小,吸收带边向低能方向移动,表明光吸收随着压应变增大而增加,吸收带边随着拉应变增加向低能方向移动。其他光学性质表现出类似的变化规律,光学性质计算结果表明应变能够有效调节光吸收特性,增强光学利用率,研究结果为Mo2C(001)作为新型光电子材料的应用提供理论支撑。  相似文献   

9.
Reflectivity spectra of TlSbS2 single crystals are measured in the photon energy range from 1 to 12 eV. The spectra exhibit 19 structures which are compared with previous measurements and discussed in terms of theoretical band structure calculations. The optical functions are calculated for the photon energy range covered in the experiment.  相似文献   

10.
Optical absorption spectra of n-type CuInSe2 single crystals were evaluated by means of photoacoustic spectroscopy in the photon energy range from 0.94 to 1.02 eV. At photon energies below 0.99 eV the spectra exhibit exponential tails that are ascribed to the presence of shallow impurity states. At higher photon energies the absorption coefficients follow the relation for direct allowed optical transitions between parabolic bands. The parameters of this relation are determined and compared with previous measurements.  相似文献   

11.
A series of glass specimens was prepared from mixtures of SiO2, TiO2 and Na2O, and their optical absorption coefficients measured as functions of photon energy in the range 2.1–3.3 eV. From the results, values of the optical energy gap are calculated and found to be dependent on the glass compositions. The results are analysed in terms of a mechanism of optical absorption arising from forbidden indirect transitions.  相似文献   

12.
采用基于密度泛函理论的第一性原理赝势平面波方法对Sc、Ce单掺和共掺后CrSi2的几何结构、电子结构、复介电函数、吸收系数和光电导率进行了计算。结果表明:Sc、Ce掺杂CrSi2的晶格常数增大,带隙变小。本征CrSi2的带隙为0.386 eV,Sc、Ce单掺及共掺CrSi2的禁带宽度分别减小至0.245 eV、0.232 eV、0.198 eV,费米能级均向低能区移动进入价带。由于Sc的3d态电子和Ce的4f态电子的影响,Sc、Ce掺杂的CrSi2在导带下方出现了杂质能级。掺杂后的CrSi2介电函数虚部第一介电峰峰值增加且向低能方向移动,说明Sc、Ce掺杂使得CrSi2在低能区的光跃迁强度增强,Sc-Ce共掺时更明显。Sc、Ce掺杂的CrSi2吸收边在低能方向发生红移,在能量大于21.6 eV特别是在位于31.3 eV的较高能量附近,本征CrSi2几乎不吸收光子,Sc单掺和Sc-Ce共掺CrSi2吸收光子的能力有所增强,并在E=31.3 eV附近形成了第二吸收峰。说明掺杂Sc、Ce改善了CrSi2对红外和较高能区光子的吸收。在小于3.91 eV的低能区掺杂后的CrSi2光电导率增加。在20.01 eV<E<34.21 eV时,本征CrSi2光电导率为零,但Sc、Ce掺杂后的体系不为零,掺杂拓宽了CrSi2的光响应范围。研究结果为CrSi2基光电器件的应用与设计提供了理论依据。  相似文献   

13.
GaSe thin films are obtained by evaporating GaSe crystals onto ultrasonically cleaned glass substrates kept at room temperature under a pressure of ∼10–5 Torr. The X‐ray analysis revealed that these films are of amorphous nature. The reflectance and transmittance of the films are measured in the incident photon energy range of 1.1–3.0 eV. The absorption coefficient spectral analysis revealed the existence of long and wide band tails of the localized states in the low absorption region. The band tails width is calculated to be 0.42 eV. The analysis of the absorption coefficient in the high absorption region revealed an indirect forbidden band gap of 1.93 eV. The transmittance analysis in the incidence photon wavelength range of 500–1100 nm allowed the determination of refractive index as function of wave length. The refractive index–wavelength variation leads to the determination of dispersion and oscillator energies as 31.23 and 3.90 eV, respectively. The static refractive index and static dielectric constant were also calculated as a result of the later data and found to be 9.0 and 3.0, respectively. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
A study of the optical properties of pure‐and some metal ions doped ammonium sulfate crystals (AS) were made. Optical constants of AS crystals were calculated at room temperature. The optical absorption coefficient (α ) was analyzed and interpreted to be in the allowed direct transition. The introduction of Rb+ or Cs+ ions gives rise to an intense charge transfer band with a maximum at λ= 310 nm in the optical spectrum. In case of Cr3+ ‐doping, the absorption shows a shoulder just before the onset band to band transition. The values of the allowed direct energy gap Eg for undoped and doped crystals were calculated. It was found that Eg values were decreased with metal ions doping. The refractive index, the extinction coefficient and both the real and imaginary parts of the dielectric permittivity were calculated as a function of photon energy. The validity of Cauchy‐Sellimeier equation was checked in the wavelength range 4.9 ‐ 5.6 eV and its parameters were calculated. Applying the Single‐Effective‐Oscillator model, the moments of ε (E ) could be estimated. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The optical properties of Tl2In2S3Se layered single crystals have been studied by means of transmission and reflection measurements in the wavelength range of 450‐1100 nm. The analysis of the absorption data revealed the presence of both optical indirect and direct transitions with energy band gaps of 2.16 and 2.42 eV, respectively. The observed coexistence of indirect and direct energy band gaps is related to the anisotropy of the Tl‐containing layered crystals. The dispersion of the refractive index is discussed in terms of the Wemple‐DiDomenico single‐effective‐oscillator model. The refractive index dispersion parameters: oscillator energy, dispersion energy, oscillator strength and zero‐frequency refractive index were found to be 4.78 eV, 43.58 eV, 13.18 × 1013 m–2 and 3.18, respectively. From X‐ray powder diffraction study, the parameters of monoclinic unit cell were determined. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
A new class of polyacetylene was synthesized via the cyclopolymerization of 4,10-bis(diethyl malonate)-1,6,11-dodecatriyne by using MoCl5-EtAlCl2 catalyst system. The polymerization proceeded in mild homogeneous manner to give 32% yield of polymer. The chemical structure of resulting polymer was characterized by NMR (1H-, 13C-), IR, and UV-visible spectroscopies to have a conjugated backbone system. The polymer showed characteristic wide UV-visible absorption band and PL maximum peak at 530 nm corresponding to the photon energy of 2.34 eV. The cyclic voltammogram of polymer showed the stable electrochemical window in the range of of ?1.50V to +1.50V. From the CV measurements, the HOMO energy level of the polymer was calculated to be 5.55 eV.  相似文献   

17.
Optical absorption spectra in the photon energy range from 0.4 to 1.2 eV and photoreflectance spectra in the range of the fundamental edge are measured on n-type CuInSe2 single crystals. Photoreflectance spectroscopy yields the true gap energy while the near-edge absorption spectra are dominated by acceptor–to–conduction band transitions, the acceptor ionisation energy being about 80 meV. Based on intrinsic defect chemistry considerations this acceptor is ascribed to copper vacencies.  相似文献   

18.
A systematic investigation on the effect of substrate temperature on the structure, optical absorption and density of states of vacuum evaporated gallium monoselenide (GaSe) thin films is reported. The X‐ray diffraction analysis shows an occurrence of amorphous to polycrystalline transformation in the films deposited at higher‐temperature substrates (573K). The compositional analysis is made with Auger Electron Spectroscopy (AES). The thickness of the film (175nm) is measured by a multiple beam interferometery. Optical characteristics of the GaSe sample have been analyzed using spectrophotometer in the photon energy range of 1.0 ‐ 4 eV. The absorption mechanism has been recognized and the allowed indirect as well as forbidden direct transitions have been found. As‐deposited films show two indirect and allowed transitions due to spin‐orbit splitting of the valence band, as reported here for the first time. Low field conduction have enabled us to determine the density of states in amorphous and poly‐GaSe films. The amorphous and polycrystalline GaSe thin films have localized states density values of N (EF) = 1.686 × 1017 cm‐3 eV‐1 and 1.257 × 1015 cm‐3 eV‐1 respectively. The experimental results are interpreted in terms of variations in the density of localized states due to progressive decrease of the unsaturated bonds during deposition. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The optical properties of Tl2InGaSe4 layered single crystals have been studied through the transmission and reflection measurements in the wavelength range of 500‐1100 nm. The analysis of room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 1.86 and 2.05 eV, respectively. Transmission measurements carried out in the temperature range of 10‐300 K revealed that the rate of change of the indirect band gap with temperature is γ = – 4.4 × 10‐4 eV/K. The absolute zero value of the band gap energy was obtained as Egi(0) = 1.95 eV. The dispersion of the refractive index is discussed in terms of the single oscillator model. The refractive index dispersion parameters: oscillator wavelength and strength were found to be 2.53 × 10–7 m and 9.64 × 1013 m–2, respectively. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
MoTe2由于其类石墨烯的堆叠方式和丰富的相结构而引起科研人员的广泛研究,特别是合适的禁带宽度使其在光电器件领域有着光明的应用前景。基于非平衡格林函数-密度泛函理论,通过第一性原理计算方法,研究了不同原子空位缺陷对单层2H-MoTe2光电效应的影响。结果表明:不同空位缺陷下2H-MoTe2器件的光电流函数与唯象理论相符合。光子能量在1.0~2.8 eV时,2Te空位缺陷对单层2H-MoTe2的光电流有显著提升,特别是在光子能量2.6 eV时获得所有器件的最大光电流。利用能带结构发现不同原子空位缺陷都导致单层2H-MoTe2的价带向高能级处偏移,而导带向低能级处偏移,减小了带隙,在线性偏振光的照射下有利于电子从价带跃迁到导带形成光电流。同时发现1Te空位缺陷和Mo空位缺陷的单层2H-MoTe2在远离费米能级处具有相似的能带结构,从而导致在光子能量大于1.6 eV时,1Te空位和Mo空位器件的光电流随光子能量的变化拥有相同的变化趋势。这些计算结果可以用于指导MoTe2光电器件的设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号