首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 321 毫秒
1.
The main difficulty in Laplace's method of asymptotic expansions of double integrals is originated by a change of variables. We consider a double integral representation of the second Appell function F2(a,b,b,c,c;x,y) and illustrate, over this example, a variant of Laplace's method which avoids that change of variables and simplifies the computations. Essentially, the method only requires a Taylor expansion of the integrand at the critical point of the phase function. We obtain in this way an asymptotic expansion of F2(a,b,b,c,c;x,y) for large b, b, c and c. We also consider a double integral representation of the fourth Appell function F4(a,b,c,d;x,y). We show, in this example, that this variant of Laplace's method is uniform when two or more critical points coalesce or a critical point approaches the boundary of the integration domain. We obtain in this way an asymptotic approximation of F4(a,b,c,d;x,y) for large values of a,b,c and d. In this second example, the method requires a Taylor expansion of the integrand at two points simultaneously. For this purpose, we also investigate in this paper Taylor expansions of two-variable analytic functions with respect to two points, giving Cauchy-type formulas for the coefficients of the expansion and details about the regions of convergence.  相似文献   

2.
The finite generators of Abelian integral are obtained, where Γh is a family of closed ovals defined by H(x,y)=x2+y2+ax4+bx2y2+cy4=h, hΣ, ac(4acb2)≠0, Σ=(0,h1) is the open interval on which Γh is defined, f(x,y), g(x,y) are real polynomials in x and y with degree 2n+1 (n?2). And an upper bound of the number of zeros of Abelian integral I(h) is given by its algebraic structure for a special case a>0, b=0, c=1.  相似文献   

3.
In this paper, we consider the partial difference equation with continuous variables of the form P1z(x + a, y + b) + p2z (x + a, y) + p3z (x, y + b) − p4z (x, y) + P (x, y) z (xτ, yσ) = 0, where P ϵ C(R+ × R+, R+ − {0}), a, b, τ, σ are real numbers and pi (i = 1, 2, 3, 4) are nonnegative constants. Some sufficient conditions for all solutions of this equation to be oscillatory are obtained.  相似文献   

4.
1Intr0ducti0nLetAden0tethesetofallfunctionsanalyticinA={z:Izl<1}.LetB={W:WEAandIW(z)l51}.Aisalocallyconvexlineaztop0l0gicalspacewithrespecttothetopologyofuniformconvergenceon`c0mpact8ubsetsofA-LetTh(c1,'tc.-1)={p(z):p(z)EA,Rop(z)>0,p(z)=1 clz czzz ' c.-lz"-l 4z" ',wherecl,',cn-1areforedcomplexconstants}.LetTh,.(b,,-..,b,-,)={p(z):P(z)'EAwithReP(z)>Oandp(z)=1 blz ' b.-lz"-l 4z" '-,wherebl,-'-jbu-1areffeedrealconstantsanddkarerealnumbersf0rk=n,n 1,'--}-LetTu(l1,'i'tI.-1)={…  相似文献   

5.
Let xi ≥ 0, yi ≥ 0 for i = 1,…, n; and let aj(x) be the elementary symmetric function of n variables given by aj(x) = ∑1 ≤ ii < … <ijnxiixij. Define the partical ordering x <y if aj(x) ≤ aj(y), j = 1,… n. We show that x $?y ? xα$?yα, 0 $?α ≤ 1, where {xα}i = xαi. We also give a necessary and sufficient condition on a function f(t) such that x <y ? f(x) <f(y). Both results depend crucially on the following: If x <y there exists a piecewise differentiable path z(t), with zi(t) ≥ 0, such that z(0) = x, z(1) = y, and z(s) <z(t) if 0 ≤ st ≤ 1.  相似文献   

6.
We prove that, for positive integers a, b, c and d with cd, a>1, b>1, the number of simultaneous solutions in positive integers to ax2cz2=1, by2dz2=1 is at most two. This result is the best possible one. We prove a similar result for the system of equations x2ay2=1, z2bx2=1.  相似文献   

7.
For integer n ≥ 1 let Hn = Hn(x, y, z) = Σp + q + r = nxpyqzr be the homogeneous product sum of weight n on three letters x, y, z. Morgan Ward conjectured that Hn ≠ 0 for all integers n, x, y, z with n > 1 and xyz ≠ 0. In support of this conjecture he proved that Hn ≠ 0 if n is even or if n + 2 is a prime number greater than 3. This paper adds considerably more evidence in support of Ward's conjecture by showing that in many cases Hn(a, b, c)¬=0 modulo 2, 4, or 16. The parity of Hn(a, b, c) is determined in all cases and, when Hn(a, b, c) is even, further congruences are given modulo 4 or 16.  相似文献   

8.
Let ξ, ξ0, ξ1, ... be independent identically distributed (i.i.d.) positive random variables. The present paper is a continuation of the article [1] in which the asymptotics of probabilities of small deviations of series S = Σ j=0 a(j j was studied under different assumptions on the rate of decrease of the probability ?(ξ < x) as x → 0, as well as of the coefficients a(j) ≥ 0 as j → ∞. We study the asymptotics of ?(S < x) as x → 0 under the condition that the coefficients a(j) are close to exponential. In the case when the coefficients a(j) are exponential and ?(ξ < x) ~ bx α as x → 0, b > 0, a > 0, the asymptotics ?(S < x) is obtained in an explicit form up to the factor x o(1). Originality of the approach of the present paper consists in employing the theory of delayed differential equations. This approach differs significantly from that in [1].  相似文献   

9.
We denote the distance between vertices x and y of a graph by d(x, y), and pij(x, y) = ∥ {z : d(x, z) = i, d(y, z) = j} ∥. The (s, q, d)-projective graph is the graph having the s-dimensional subspaces of a d-dimensional vector space over GF(q) as vertex set, and two vertices x, y adjacent iff dim(x ? y) = s ? 1. These graphs are regular graphs. Also, there exist integers λ and μ > 4 so that μ is a perfect square, p11(x, y) = λ whenever d(x, y) = 1, and p11(x, y) = μ whenever d(x, y) = 2. The (s, q, d)-projective graphs where 2d3 ≤ s < d ? 2 and (s, q, d) ≠ (2d3, 2, d), are characterized by the above conditions together with the property that there exists an integer r satisfying certain inequalities.  相似文献   

10.
The oscillatory and asymptotic behavior of solutions of a class of nth order nonlinear differential equations, with deviating arguments, of the form (E, δ) Lnx(t) + δq(t) f(x[g1(t)],…, x[gm(t)]) = 0, where δ = ± 1 and L0x(t) = x(t), Lkx(t) = ak(t)(Lk ? 1x(t))., k = 1, 2,…, n (. = ddt), is examined. A classification of solutions of (E, δ) with respect to their behavior as t → ∞ and their oscillatory character is obtained. The comparisons of (E, 1) and (E, ?1) with first and second order equations of the form y.(t) + c1(t) f(y[g1(t)],…, y[gm(t)]) = 0 and (an ? 1(t)z.(t)). ? c2(t) f(z[g1(t)],…, z[gm(t)]) = 0, respectively, are presented. The obtained results unify, extend and improve some of the results by Graef, Grammatikopoulos and Spikes, Philos and Staikos.  相似文献   

11.
For aj,bj?1, j=1,2,…,d, we prove that the operator maps into itself for , where , and k(x,y)=φ(x,y)eig(x,y), φ(x,y) satisfies (1.2) (e.g. φ(x,y)=|xy|iτ,τ real) and the phase g(x,y)=xayb. We study operators with more general phases and for these operators we require that aj,bj>1, j=1,2,…,d, or al=bl?1 for some l∈{1,2,…,d}.  相似文献   

12.
Explicit formulae are determined for the number of representations of a positive integer by the quadratic forms ax2+by2+cz2+dt2 with a,b,c,d∈{1,4,9,36}, gcd(a,b,c,d)=1 and a?b?c?d.  相似文献   

13.
In this piece of work, we introduce a new idea and obtain stability interval for explicit difference schemes of O(k2+h2) for one, two and three space dimensional second-order hyperbolic equations utt=a(x,t)uxx+α(x,t)ux-2η2(x,t)u,utt=a(x,y,t)uxx+b(x,y,t)uyy+α(x,y,t)ux+β(x,y,t)uy-2η2(x,y,t)u, and utt=a(x,y,z,t)uxx+b(x,y,z,t)uyy+c(x,y,z,t)uzz+α(x,y,z,t)ux+β(x,y,z,t)uy+γ(x,y,z,t)uz-2η2(x,y,z,t)u,0<x,y,z<1,t>0 subject to appropriate initial and Dirichlet boundary conditions, where h>0 and k>0 are grid sizes in space and time coordinates, respectively. A new idea is also introduced to obtain explicit difference schemes of O(k2) in order to obtain numerical solution of u at first time step in a different manner.  相似文献   

14.
The Do?ev-Grosswald asymptotic series for the generalized Bessel polynomials yn(z; a, b) is extended to O(1/n4) relative accuracy. The differential equation of the asymptotic factor, derived from the differential equation for yn(z; a, b), is the basis of a different and easier method that employs simple recurrence relations and much less algebra for obtaining the same series. This is applied to the important special case of a = 1 to obtain the asymptotic series to O(1/n11) relative accuracy.  相似文献   

15.
Let jvk, yvk and cvk denote the kth positive zeros of the Bessel functions Jv(x), Yv(x) and of the general cylinder function Cv(x) = cos αJv(x)?sin αYv(x), 0 ? α < π, respectively. In this paper we extend to cvk, k = 2, 3,..., some linear inequalities presently known only for jvk. In the case of the zeros yvk we are able to extend these inequalities also to k = 1. Finally in the case of the first positive zero jv1 we compare the linear enequalities given in [9] with some other known inequalities.  相似文献   

16.
Using stability analysis and information from the constant coefficient problem, we motivate an explicit exponentially fitted one-step method to approximate the solution of a scalar Riccati equation ϵy′ = c(x)y2 + d(x)y + e(x), 0 < xx, y(0) = y0, where ϵ > 0 is a small parameter and the coefficients c, d and e are assumed to be real valued and continuous. An explicit Euler-type scheme is presented which, when applied to the numerical integration of the continuous problem, give solutions satisfying a uniform (in ϵ) error estimate with order one (where suitable restrictions are imposed on the coefficients c, d and e together with the choice of y(0)). Using a counterexample, we show that, for a particular class of problems, the solutions of the fitted scheme do not converge uniformly (in ϵ) to the corresponding solutions of the continuous problems. Numerical results are presented which compare the fitted scheme with a number of implicit schemes when applied to the numerical integration of some sample problems.  相似文献   

17.
Let L be a lattice of finite length, ξ = (x 1,…, x k )∈L k , and yL. The remoteness r(y, ξ) of y from ξ is d(y, x 1)+?+d(y, x k ), where d stands for the minimum path length distance in the covering graph of L. Assume, in addition, that L is a graded planar lattice. We prove that whenever r(y, ξ) ≤ r(z, ξ) for all zL, then yx 1∨?∨x k . In other words, L satisfies the so-called c 1 -median property.  相似文献   

18.
Let a,b and n be positive integers and the set S={x1,…,xn} of n distinct positive integers be a divisor chain (i.e. there exists a permutation σ on {1,…,n} such that xσ(1)|…|xσ(n)). In this paper, we show that if a|b, then the ath power GCD matrix (Sa) having the ath power (xi,xj)a of the greatest common divisor of xi and xj as its i,j-entry divides the bth power GCD matrix (Sb) in the ring Mn(Z) of n×n matrices over integers. We show also that if a?b and n?2, then the ath power GCD matrix (Sa) does not divide the bth power GCD matrix (Sb) in the ring Mn(Z). Similar results are also established for the power LCM matrices.  相似文献   

19.
Let Γ denote a distance-regular graph with diameter d≥3. By a parallelogram of length 3, we mean a 4-tuple xyzw consisting of vertices of Γ such that (x,y)=(z,w)=1, (x,z)=3, and (x,w)=(y,w)=(y,z)=2, where denotes the path-length distance function. Assume that Γ has intersection numbers a 1=0 and a 2≠0. We prove that the following (i) and (ii) are equivalent. (i) Γ is Q-polynomial and contains no parallelograms of length 3; (ii) Γ has classical parameters (d,b,α,β) with b<−1. Furthermore, suppose that (i) and (ii) hold. We show that each of b(b+1)2(b+2)/c 2, (b−2)(b−1)b(b+1)/(2+2bc 2) is an integer and that c 2b(b+1). This upper bound for c 2 is optimal, since the Hermitian forms graph Her2(d) is a triangle-free distance-regular graph that satisfies c 2=b(b+1). Work partially supported by the National Science Council of Taiwan, R.O.C.  相似文献   

20.
Functional equations of the form f(x + y)g(x ? y) = Σ j=1 n α j (x)β j (y) as well as of the form f1(x + z)f2(y + z)f3(x + y ? z) = Σ j=1 m φ j (x, y)ψ j (z) are solved for unknown entire functions f, g j , β j : ? → ? and f1, f2, f3, ψ j : ? → ?, φ j : ?2 → ? in the cases of n = 3 and m = 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号