首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lattice Boltzmann phononic lattice solid   总被引:6,自引:0,他引:6  
I present a Boltzmann lattice gas-like approach for modeling compressional waves in an inhomogeneous medium as a first step toward developing a method to simulate seismic waves in complex solids. The method is based on modeling particles in a discrete lattice with wavelike characteristics of partial reflection and transmission when passing between links with different properties as well as phononlike interactions (i.e., collisions), with particle speed dependent on link properties. In the macroscopic limit, this approach theoretically yields compressional waves in an inhomogeneous acoustic medium. Numerical experiments verify the method and demonstrate its convergence properties. The lattice Boltzmann phononic lattice solid could be used to study how seismic wave anisotropy and attenuation are related to microfractures, the complex geometry of rock matrices, and their couplings to pore fluids. However, additional particles related to the two transverse phonons must be incorporated to correctly simulate wave phenomena in solids.  相似文献   

2.
A three-dimensional lattice-Boltzmann model which yields correct hydrodynamics at the Navier-Stokes level of the Chapman-Enskog expansion requires a minimum of 26 velocities. We present results for a model with one additional velocity, determined by maximizing the equilibrium entropy. For compressible Rayleigh-Bénard convection the model is more accurate but considerably less stable, than a previous, approximate 21-speed model.  相似文献   

3.
We present an energy-conserving multiple-relaxation-time finite difference lattice Boltzmann model for compressible flows. The collision step is first calculated in the moment space and then mapped back to the velocity space. The moment space and corresponding transformation matrix are constructed according to the group representation theory. Equilibria of the nonconserved moments are chosen according to the need of recovering compressible Navier-Stokes equations through the Chapman-Enskog expansion. Numerical experiments showed that compressible flows with strong shocks can be well simulated by the present model. The new model works for both low and high speeds compressible flows. It contains more physical information and has better numerical stability and accuracy than its single-relaxation-time version.  相似文献   

4.
《Physics letters. A》2006,359(6):564-572
In this Letter an incompressible MRT-LB model has been proposed. The equilibria in momentum space are derived from an earlier incompressible LBGK model by Guo et al. Through the Chapman–Enskog expansion the incompressible Navier–Stokes equations can be recovered without artificial compressible effects. The steady Poiseuille flow, the driven cavity flow and the double shear flow have been carried on by the incompressible MRT-LB model. The numerical simulation results agree well with the analytical solutions or the existing results. It is found that the incompressible MRT-LB model shows better numerical stability.  相似文献   

5.
A lattice Boltzmann model for coupled diffusion   总被引:1,自引:0,他引:1  
Diffusion coupling between different chemical components can have significant effects on the distribution of chemical species and can affect the physico-chemical properties of their supporting medium. The coupling can arise from local electric charge conservation for ions or from bound components forming compounds. We present a new lattice Boltzmann model to account for the diffusive coupling between different chemical species. In this model each coupling is added as an extra relaxation term in the collision operator. The model is tested on a simple diffusion problem with two coupled components and is in excellent agreement with the results obtained through a finite difference method. Our model is observed to be numerically very stable and unconditional stability is shown for a class of diffusion matrices. We further develop the model to account for advection and show an example of application to flow in porous media in two dimensions and an example of convection due to salinity differences. We show that our model with advection loses the unconditional stability, but offers a straight-forward approach to complicated two-dimensional advection and coupled diffusion problems.  相似文献   

6.
A two-dimensional finite difference lattice Boltzmann model for two-component fluid systems is introduced. Phase separaton is achieved using an appropriate expression of the bulk free energy. Flux limiter techniques are used to improve the numberical accuracy of this model.  相似文献   

7.
陈兴旺  施保昌 《中国物理》2005,14(7):1398-1406
绝大多数现有的格子波尔兹曼磁流体动力学模型其实是用可压缩方法来模拟不可压磁流体。而这些可压缩效应在数值模拟中往往会带来意想不到的误差。在这篇文章中,我们提出了一个全新的可用于的不可压格子波尔兹曼磁流体动力学模型,并且进行了哈特曼流的数值模拟。模拟结果与哈特曼流的解析解非常吻合。这个方法需要一个假设条件来消除误差。我们做了大量的数值试验,并且与Dellar教授的模型进行了详细的分析与比较。  相似文献   

8.
Analytical solutions of the lattice Boltzmann BGK model   总被引:1,自引:0,他引:1  
Analytical solutions of the two-dimensional triangular and square lattice Boltzmann BGK models have been obtained for the plane Poiseuille flow and the plane Couette flow. The analytical solutions are written in terms of the characteristic velocity of the flow, the single relaxation time , and the lattice spacing. The analytic solutions are the exact representation of these two flows without any approximation. Using the analytical solution, it is shown that in Poiseuille flow the bounce-back boundary condition introduces an error of first order in the lattice spacing. The boundary condition used by Kadanoffet al. in lattice gas automata to simulate Poiseuille flow is also considered for the triangular lattice Boltzmann BGK model. An analytical solution is obtained and used to show that the boundary condition introduces an error of second order in the lattice spacing.  相似文献   

9.
Yali Duan  Linghua Kong 《Physica A》2012,391(3):625-632
In this paper we develop a lattice Boltzmann model for the generalized Burgers-Huxley equation (GBHE). By choosing the proper time and space scales and applying the Chapman-Enskog expansion, the governing equation is recovered correctly from the lattice Boltzmann equation, and the local equilibrium distribution functions are obtained. Excellent agreement with the exact solution is observed, and better numerical accuracy is obtained than the available numerical result. The results indicate the present model is satisfactory and efficient. The method can also be applied to the generalized Burgers-Fisher equation and be extended to multidimensional cases.  相似文献   

10.
It is well known that the lattice Boltzmann equation method (LBE) can model the incompressible Navier-Stokes (NS) equations in the limit where density goes to a constant. In a LBE simulation, however, the density cannot be constant because pressure is equal to density times the square of sound speed, hence a compressibility error seems inevitable for the LBE to model incompressible flows. This work uses a modified equilibrium distribution and a modified velocity to construct an LBE which models time-independent (steady) incompressible flows with significantly reduced compressibility error. Computational results in 2D cavity flow and in a 2D flow with an exact solution are reported.  相似文献   

11.
The lattice Boltzmann equation on irregular lattices   总被引:2,自引:0,他引:2  
A general framework to extend the lattice Boltzmann equation to arbitrary lattice geometries is presented and numerically demonstrated for the case of a two-dimensional Poiseuille flow. The new scheme considerably extends the range of applicability of the Boltzmann method to problems requiring the use of nonuniform grids.  相似文献   

12.
Lack of energy conservation in lattice Boltzmann models leads to unrealistically high values of the bulk viscosity. For this reason, the lattice Boltzmann method remains a computational tool rather than a model of a fluid. A novel lattice Boltzmann model with energy conservation is derived from Boltzmann's kinetic theory. Simulations demonstrate that the new lattice Boltzmann model is the valid approximation of the Boltzmann equation for weakly compressible flows and microflows.  相似文献   

13.
A general lattice Boltzmann method for simulation of fluids with tailored transport coefficients is presented. It is based on the recently introduced quasi-equilibrium kinetic models, and a general lattice Boltzmann implementation is developed. Lattice Boltzmann models for isothermal binary mixtures with a given Schmidt number, and for a weakly compressible flow with a given Prandtl number are derived and validated.  相似文献   

14.
为研究空化泡溃灭阶段的数值仿真,本文以格子Boltzmann方法为基础,采用改进作用力引进格式,对改变力学稳定性条件相关参数进行优化。通过最优参数提取,提高该多相格子Boltzmann模型密度比,从而最大程度保证热力学一致性及模型稳定性。并通过共存密度曲线对比及误差值计算,确定了参数的最优值。基于改进伪势格子Boltzmann模型对空泡溃灭进行建模,并将计算结果和实验结果对比,验证了空泡溃灭模型的有效性,对实际运用有一定的指导意义。  相似文献   

15.
We propose a mean-field free energy approach to simulate multi- component fluids. The model has been validated in terms of the Laplace equation of capillarity and dispersion relation of interfacial waves. Simulations of a ternary system shows that the total free energy decreases and reaches a minimum after phase separation has occurred. Different drop shapes can be obtained by adjusting the interaction strengths between individual components. These results demonstrate that both macroscopic free energy and microscopic fluid-fluid interactions have been well described in our multicomponent model.  相似文献   

16.
The Bethe lattice spin glass revisited   总被引:2,自引:0,他引:2  
So far the problem of a spin glass on a Bethe lattice has been solved only at the replica symmetric level, which is wrong in the spin glass phase. Because of some technical difficulties, attempts at deriving a replica symmetry breaking solution have been confined to some perturbative regimes, high connectivity lattices or temperature close to the critical temperature. Using the cavity method, we propose a general non perturbative solution of the Bethe lattice spin glass problem at a level of approximation which is equivalent to a one step replica symmetry breaking solution. The results compare well with numerical simulations. The method can be used for many finite connectivity problems appearing in combinatorial optimization. Received 27 September 2000  相似文献   

17.
Fresh cement mortar is a type of workable paste,which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering.In this paper,Papanastasiou’s model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model(MRT-LB).Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou’s model provides a good approximation of realistic Bingham plastics for values of m108.For lower values of m,Papanastasiou’s model is valid for fluids between Bingham and Newtonian fluids.The MRT-LB model is validated by two benchmark problems:2D steady Poiseuille flows and lid-driven cavity flows.Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability.We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle.Besides the rich flow structures obtained in this work,the dynamics fluid force on the round particle is calculated.Results show that both the Reynolds number Re and the Bingham number Bn afect the drag coefcients CD,and a drag coefcient with Re and Bn being taken into account is proposed.The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed.Finally,the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields.These results help simulation of fresh concrete flowing in porous media.  相似文献   

18.
Analytical solution for the axi-symmetrical lattice Boltzmann model is obtained for the low-Mach number cylindrical Couette flows. In the hydrodynamic limit, the present solution is in excellent agreement with the result of the Navier–Stokes equation. Since the kinetic boundary condition is used, the present analytical solution using nine discrete velocities can describe flows with the Knudsen number up to 0.1. Meanwhile, the comparison with the simulation data obtained by the direct simulation Monte Carlo method shows that higher-order lattice Boltzmann models with more discrete velocities are needed for highly rarefied flows.  相似文献   

19.
The search for the development of a reliable mathematical model for understanding bubble dynamics behavior is an ongoing endeavor.A long list of complex phenomena underlies the physics of this problem.In the past decades,the lattice Boltzmann method has emerged as a promising tool to address such complexities.In this regard,we have applied a 121-velocity multiphase lattice Boltzmann model to an asymmetric cluster of bubbles in an acoustic field.A problem as a benchmark is studied to check the consistency and applicability of the model.The problem of interest is to study the deformation and coalescence phenomena in bubble cluster dynamics,as well as the screening effect on an acoustic multibubble medium.It has been observed that the LB model is able to simulate the combination of the three aforementioned phenomena for a bubble cluster as a whole and for every individual bubble in the cluster.  相似文献   

20.
A lattice Boltzmann model with a multiple-relaxation-time (MRT) collision operator for the convection–diffusion equation is presented. The model uses seven discrete velocities in three dimensions (D3Q7 model). The off-diagonal components of the relaxation-time matrix, which originate from the rotation of the principal axes, enable us to take into account full anisotropy of diffusion. An asymptotic analysis of the model equation with boundary rules for the Dirichlet and Neumann-type (specified flux) conditions is carried out to show that the model is first- and second-order accurate in time and space, respectively. The results of the analysis are verified by several numerical examples. It is also shown numerically that the error of the MRT model is less sensitive to the variation of the relaxation-time coefficients than that of the classical BGK model. In addition, an alternative treatment for the Neumann-type boundary condition that improves the accuracy on a curved boundary is presented along with a numerical example of a spherical boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号