首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
“合理”QSAR模型是指在了解配体与受体相互作用模式的前提下建立定量构效关系, 这样避开了传统做法仅仅依靠样本集分子自身信息来构建预测模型的诸多弊端. 本文将此思想应用于肽/蛋白质亲和活性的研究当中, 借助于遗传算法作为虚拟受体结合靶点及相互作用模式的筛选手段得到了一种新的建模技术: 肽/蛋白质结合模式遗传虚拟筛选(genetic virtual screening of combinative mode for peptide/protein, GVSC). 该法成功解决了“合理”QSAR研究中的难题, 即大多数情况下受体结构未知而难以了解配基与之发生的结合方式. 分别使用58个血管紧张素转化酶, 18个Camel抗体蛋白cAb-lys3双位点突变残基对GVSC加以检验, 其结果表明GVSC能够较好地阐明配基与受体之间的作用机理, 并能得到优于传统方法的QSAR模型.  相似文献   

2.
Zinc‐dependent matrix metalloproteinase (MMP) family is considered to be an attractive target because of its important role in many physiological and pathological processes. In the present work, a molecular modeling study combining protein‐, ligand‐ and complex‐based computational methods was performed to analyze a new series of β‐N‐biaryl ether sulfonamide hydroxamates as potent inhibitors of gelatinase A (MMP‐2) and gelatinase B (MMP‐9). Firstly, the similarities and differences between the binding sites of MMP‐2 and MMP‐9 were analyzed through sequence alignment and structural superimposition. Secondly, in order to extract structural features influencing the activities of these inhibitors, quantitative structure‐activity relationship (QSAR) models using genetic algorithm‐multiple linear regression (GA‐MLR), comparative molecular field (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were developed. The proposed QSAR models could give good predictive ability for the studied inhibitors. Thirdly, docking study was employed to further explore the binding mode between the ligand and protein. The results from all the above analyses could provide the information about the similarities and differences of the binding mode between the MMP‐2, MMP‐9 and their potent inhibitors. The obtained results can provide very useful information for the design of new potential inhibitors. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

3.
One of the major challenges in computational approaches to drug design is the accurate prediction of the binding affinity of novel biomolecules. In the present study an automated procedure which combines docking and 3D-QSAR methods was applied to several drug targets. The developed receptor-based 3D-QSAR methodology was tested on several sets of ligands for which the three-dimensional structure of the target protein has been solved – namely estrogen receptor, acetylcholine esterase and protein-tyrosine-phosphatase 1B. The molecular alignments of the studied ligands were determined using the docking program AutoDock and were compared with the X-ray structures of the corresponding protein-ligand complexes. The automatically generated protein-based ligand alignment obtained was subsequently taken as basis for a comparative field analysis applying the GRID/GOLPE approach. Using GRID interaction fields and applying variable selection procedures, highly predictive models were obtained. It is expected that concepts from receptor-based 3D QSAR will be valuable tools for the analysis of high-throughput screening as well as virtual screening data  相似文献   

4.
ω-芋螺毒素属于海洋生物活性多肽,由24-31个氨基酸残基组成.特异性作用于电压敏感的钙离子通道(VGCCs),能够直接开发成药物或作为先导化合物进行新药开发.本文应用新型氨基酸残基结构描述符cscales和遗传偏最小二乘算法,对ω-芋螺毒素进行定量构效关系(QSAR)研究,并设计、构建了容量为2244个化合物的N-型和P/Q-型VGCC拮抗剂虚拟组合多肽库,然后分别采用QSAR模型预测和相似性搜索方法对组合多肽库进行了虚拟筛选.研究结果表明,建立的N-型和P/Q-型VGCC拮抗剂QSAR模型均具有较好的预测能力,交叉验证相关系数(CV-r2)均大于0.89.主成分分析和聚类分析结果表明,虚拟组合多肽库中化合物具有较好的结构多样性和差异性.通过虚拟筛选,得到了具有高预测活性的6个N-型和19个P/Q-型钙离子通道拮抗剂,为进一步的合成和活性评价奠定了理论基础.同时,本文建立的多肽QSAR预测模型和虚拟筛选策略,为其它多肽类化合物的定量构效关系研究和虚拟筛选提供了参考.  相似文献   

5.
ω-芋螺毒素属于海洋生物活性多肽, 由24-31 个氨基酸残基组成. 特异性作用于电压敏感的钙离子通道(VGCCs), 能够直接开发成药物或作为先导化合物进行新药开发. 本文应用新型氨基酸残基结构描述符cscales和遗传偏最小二乘算法, 对ω-芋螺毒素进行定量构效关系(QSAR)研究, 并设计、构建了容量为2244 个化合物的N-型和P/Q-型VGCC拮抗剂虚拟组合多肽库, 然后分别采用QSAR模型预测和相似性搜索方法对组合多肽库进行了虚拟筛选. 研究结果表明, 建立的N-型和P/Q-型VGCC拮抗剂QSAR模型均具有较好的预测能力, 交叉验证相关系数(CV-r2)均大于0.89. 主成分分析和聚类分析结果表明, 虚拟组合多肽库中化合物具有较好的结构多样性和差异性. 通过虚拟筛选, 得到了具有高预测活性的6 个N-型和19 个P/Q-型钙离子通道拮抗剂, 为进一步的合成和活性评价奠定了理论基础. 同时, 本文建立的多肽QSAR预测模型和虚拟筛选策略, 为其它多肽类化合物的定量构效关系研究和虚拟筛选提供了参考.  相似文献   

6.
考虑药物与蛋白质受体的3类非键作用模式, 利用8类虚拟原子探针和Monte Carlo随机采样技术, 得到了一套新的氨基酸侧链表面静电、立体及疏水势能场(ASSPF)参数. 在此基础上对苦味二肽和血管舒缓激五肽进行了结构表征和QSAR研究, 所建模型复相关系数R2和留一法交互检验复相关系数QLOOCV2分别为0.8457, 0.851和0.7688, 0.7952, 同时分析了肽链不同位置上氨基酸侧链对活性的影响, 取得较好的结果.  相似文献   

7.
Abstract

Interferon regulatory factor-7 (IRF-7) is involved in pulmonary infection and pneumonia. Here, a synthetic strategy that combined quantitative structure–activity relationship (QSAR)-based virtual screening and in vitro binding assay was described to identify new and potent mediator ligands of IRF-7 from natural products. In the procedure, a QSAR scoring function was developed and validated using Gaussian process (GP) regression and a structure-based set of protein–ligand affinity data. By integrating hotspot pocket prediction, pharmacokinetics profile analysis and molecular docking calculations, the scoring function was successfully applied to virtual screening against a large library of structurally diverse, drug-like natural products. With the method we were able to identify a number of potential hits, from which several compounds were found to have moderate or high affinity to IRF-7 using fluorescence binding assays, with dissociation constants Kd at micromolar level. We have also examined the structural basis and noncovalent interactions of computationally modelled IRF-7 complex with its potent ligands. It is revealed that hydrophobic forces and van der Waals contacts play a central role in stabilization of the complex architecture, while few hydrogen bonds confer additional specificity for the protein–ligand recognition.  相似文献   

8.
9.
10.
In today's world of high-throughput in silico screening, the development of virtual screening methodologies to prioritize small molecules as new chemical entities (NCEs) for synthesis is of current interest. Among several approaches to virtual screening, structure-based virtual screening has been considered the most effective. However the problems associated with the ranking of potential solutions in terms of scoring functions remains one of the major bottlenecks in structure-based virtual screening technology. It has been suggested that scoring functions may be used as filters for distinguishing binders from nonbinders instead of accurately predicting their binding free energies. Subsequently, several improvements have been made in this area, which include the use of multiple rather than single scoring functions and application of either consensus or multivariate statistical methods or both to improve the discrimination between binders and nonbinders. In view of it, the discriminative ability (distinguishing binders from nonbinders) of binary QSAR models derived using LUDI and MOE scoring functions has been compared with the models derived by Jacobbsson et al. on five data sets viz. estrogen receptor alphamimics (ERalpha_mimics), estrogen receptor alphatoxins (ERalpha_toxins), matrix metalloprotease 3 inhibitors (MMP-3), factor Xa inhibitors (fXa), and acetylcholine esterase inhibitors (AChE). The overall analyses reveal that binary QSAR is comparable to the PLS discriminant analysis, rule-based, and Bayesian classification methods used by Jacobsson et al. Further the scoring functions implemented in LUDI and MOE can score a wide range of protein-ligand interactions and are comparable to the scoring functions implemented in ICM and Cscore. Thus the binary QSAR models derived using LUDI and MOE scoring functions may be useful as a preliminary screening layer in a multilayered virtual screening paradigm.  相似文献   

11.
We have developed a visualized cluster analysis of protein-ligand interaction (VISCANA) that analyzes the pattern of the interaction of the receptor and ligand on the basis of quantum theory for virtual ligand screening. Kitaura et al. (Chem. Phys. Lett. 1999, 312, 319-324.) have proposed an ab initio fragment molecular orbital (FMO) method by which large molecules such as proteins can be easily treated with chemical accuracy. In the FMO method, a total energy of the molecule is evaluated by summation of fragment energies and interfragment interaction energies (IFIEs). In this paper, we have proposed a cluster analysis using the dissimilarity that is defined as the squared Euclidean distance between IFIEs of two ligands. Although the result of an ordered table by clustering is still a massive collection of numbers, we combine a clustering method with a graphical representation of the IFIEs by representing each data point with colors that quantitatively and qualitatively reflect the IFIEs. We applied VISCANA to a docking study of pharmacophores of the human estrogen receptor alpha ligand-binding domain (57 amino acid residues). By using VISCANA, we could classify even structurally different ligands into functionally similar clusters according to the interaction pattern of a ligand and amino acid residues of the receptor protein. In addition, VISCANA could estimate the correct docking conformation by analyzing patterns of the receptor-ligand interactions of some conformations through the docking calculation.  相似文献   

12.
13.
14.
Target-specific optimization of scoring functions for protein–ligand docking is an effective method for significantly improving the discrimination of active and inactive molecules in virtual screening applications. Its applicability, however, is limited due to the narrow focus on, e.g., single protein structures. Using an ensemble of protein kinase structures, the publically available directory of useful decoys ligand dataset, and a novel multi-factorial optimization procedure, it is shown here that scoring functions can be tuned to multiple targets of a target class simultaneously. This leads to an improved robustness of the resulting scoring function parameters. Extensive validation experiments clearly demonstrate that (1) virtual screening performance for kinases improves significantly; (2) variations in database content affect this kind of machine-learning strategy to a lesser extent than binary QSAR models, and (3) the reweighting of interaction types is of particular importance for improved screening performance. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The prominence of endogenous peptide ligands targeted to receptors makes peptides with the desired binding activity good molecular scaffolds for drug development. Minor modifications to a peptide's primary sequence can significantly alter its binding properties with a receptor, and screening collections of peptide mutants is a useful technique for probing the receptor–ligand binding domain. Unfortunately, the combinatorial growth of such collections can limit the number of mutations which can be explored using structure‐based molecular docking techniques. Genetic algorithm managed peptide mutant screening (GAMPMS) uses a genetic algorithm to conduct a heuristic search of the peptide's mutation space for peptides with optimal binding activity, significantly reducing the computational requirements of the virtual screening. The GAMPMS procedure was implemented and used to explore the binding domain of the nicotinic acetylcholine receptor (nAChR) ‐isoform with a library of 64,000 α‐conotoxin (α‐CTx) MII peptide mutants. To assess GAMPMS's performance, it was compared with a virtual screening procedure that used AutoDock to predict the binding affinity of each of the α‐CTx MII peptide mutants with the ‐nAChR. The GAMPMS implementation performed AutoDock simulations for as few as 1140 of the 64,000 α‐CTx MII peptide mutants and could consistently identify a set of 10 peptides with an aggregated binding energy that was at least 98% of the aggregated binding energy of the 10 top peptides from the exhaustive AutoDock screening. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
17.
18.
The methods of computer-aided drug design can be divided into two categories according to whether or not the structures of receptors are known1, corresponding to two principal strategies: (1) searching the bio-active ligands against virtual combinatorial libraries and calculating the affinity energy between ligand and receptor by docking ; (2) QSAR and 3D-structure data-mining. 3D-QSAR method is now applied widely to drug discovery, but this method is generally limited to refine the structu…  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号