首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
BACKGROUND: The ability to control specific protein-protein interactions conditionally in vivo would be extremely helpful for analyzing protein-protein interaction networks. SH3 (Src homology 3) modular protein binding domains are found in many signaling proteins and they play a crucial role in signal transduction by binding to proline-rich sequences. RESULTS: Random in vitro mutagenesis coupled with yeast two-hybrid screening was used to identify mutations in the second SH3 domain of Nck that render interaction with its ligand temperature sensitive. Four of the mutants were functionally temperature sensitive in mammalian cells, where temperature sensitivity was correlated with a pronounced instability of the mutant domains at the nonpermissive temperature. Two of the mutations affect conserved residues in the hydrophobic core (Val133 and Val160), suggesting a general strategy for engineering temperature-sensitive SH3-containing proteins. Indeed mutagenesis of the corresponding positions in another SH3 domain, that of Crk-1, rendered the full-length Crk-1 protein temperature sensitive for function and stability in mammalian cells. CONCLUSIONS: Construction of temperature-sensitive SH3 domains is a novel approach to regulating the function of SH3 domains in vivo. Such mutants will be valuable in dissecting SH3-mediated signaling pathways. Furthermore, the methodology described here to isolate temperature-sensitive domains should be widely applicable to any domain involved in protein-protein interactions.  相似文献   

2.
A human cDNA phage display library screen, using a phosphopeptide designed to mimic the activation loop phosphotyrosine of the Src tyrosine kinase, has identified the N-terminal SH2 domain of the p85 regulatory subunit of phosphatidyl inositol-3 kinase (PI3K) as an interacting recognition domain. Activation loop phosphorylation is known to play a conformational role in kinase activation, but is largely not thought to play a role in protein/protein recognition. Affinity chromatography and biochemical evaluation in mouse fibroblast cells has confirmed the dependence of this interaction on both the Src activation loop phosphotyrosine and the N-terminal SH2 domain of PI3K.  相似文献   

3.
Current sustained delivery strategies of protein therapeutics are limited by the fragility of the protein, resulting in minimal quantities of bioactive protein delivered. In order to achieve prolonged release of bioactive protein, an affinity-based approach was designed which exploits the specific binding of the Src homology 3 (SH3) domain with short proline-rich peptides. Specifically, methyl cellulose was modified with SH3-binding peptides (MC-peptide) with either a weak affinity or strong affinity for SH3. The release profile of SH3-rhFGF2 fusion protein from hyaluronan MC-SH3 peptide (HAMC-peptide) hydrogels was investigated and compared to unmodified controls. SH3-rhFGF2 release from HAMC-peptide was extended to 10 days using peptides with different binding affinities compared to the 48 h release from unmodified HAMC. This system is capable of delivering additional proteins with tunable rates of release, while maintaining bioactivity, and thus is broadly applicable.  相似文献   

4.
In the year 1994, the protein MIA (melanoma inhibitory activity) was found to be strongly expressed and secreted by malignant melanomas and subsequent studies revealed that MIA has an important function in melanoma development and invasion. Multidimensional NMR-spectroscopy and x-ray crystallography revealed that recombinant human MIA adopts a Src homology 3 (SH3) domain-like fold in solution, a structure with two perpendicular antiparallel three- and five-stranded beta-sheets. SH3 domains are protein modules that are found in many intracellular signalling proteins and mediate protein-protein interactions by binding to proline-rich peptide sequences. Unlike previously described protein structures with SH3 domain folds, MIA is a secreted single-domain protein of 12 kDa that contains an additional antiparallel beta-sheet and two disulfide bonds. Furthermore, the charge surrounding the canonical binding site differs from that of classical SH3 domains. The two disulfide bonds are crucial for correct folding and function as revealed by mutation analysis. Therefore, MIA appears to be the first extracellular protein adopting an SH3 domain-like fold. MIA was shown to interact with fibronectin, and MIA-interacting peptide ligands identified by phage display screening are similar to the consensus sequence of type III human fibronectin repeats, especially FN14. Interestingly, recent data revealed that MIA can also directly bind to integrin alpha 4 beta 1 and alpha 5 beta1 and that it modulates integrin activity negatively. These findings suggest an interesting role of the SH3-domain proteins in the extracellular compartment. Recently, MIA homologous proteins with a sequence identity of 44% and a sequence homology of approximately 80% were determined (TANGO, MIA-2, OTOR). This clearly suggests that this structural device is used more frequently, in processes ranging from developmental changes to the interference of cell attachment in the extracellular matrix. Detailed studies are necessary to determine the exact function of the MIA homologous proteins. It will be interesting to know whether additional protein families can be identified which are secreted and carry SH3 domain-like modules, in addition to elucidate what the specific physiological targets of this protein family are.  相似文献   

5.
A stepwise library-based strategy has been employed to acquire a potent ligand for the SH3 domain of Fyn, a Src kinase family member that plays a key role in T cell activation. The easily automated methodology is designed to identify potential interaction sites that circumscribe the protein/peptide binding region on the SH3 domain. The library protocol creates peptide/nonpeptide chimeras that are able to bind to these interaction sites that are otherwise inaccessible to natural amino acid residues. The peptide-derived lead and the Fyn-SH3 domain form a complex that exhibits a K(D) of 25 +/- 5 nM, approximately 1000-fold more potent than that displayed by the corresponding conventional peptide ligand. Furthermore, the lead ligand exhibits selectivity against SH3 domains derived from other Src kinases, in spite of a sequence identity of approximately 80%.  相似文献   

6.
The Src homology 2 (SH2) domain of interleukin-2 tyrosine kinase (Itk) binds two separate ligands: a phosphotyrosine-containing peptide and the Itk Src homology 3 (SH3) domain. Binding specificity for these ligands is regulated via cis/trans isomerization of the Asn 286-Pro 287 imide bond in the Itk SH2 domain. In this study, we develop a novel method of analyzing chemical shift perturbation and cross-peak volumes to measure the affinities of both ligands for each SH2 conformer. We find that the cis imide bond containing SH2 conformer exhibits a 3.5-fold higher affinity for the Itk SH3 domain compared with binding of the trans conformer to the same ligand, while the trans conformer binds phosphopeptide with a 4-fold greater affinity than the cis-containing SH2 conformer. In addition to furthering the understanding of this system, the method presented here will be of general application in quantitatively determining the specificities of conformationally heterogeneous systems that use a molecular switch to regulate binding between multiple distinct ligands.  相似文献   

7.
BACKGROUND: The observations that Src(-/-) mice develop osteopetrosis and Src family tyrosine kinase inhibitors decrease osteoclast-mediated resorption of bone have implicated Src in the regulation of osteoclast-resorptive activity. We have designed and synthesized a compound, AP22161, that binds selectively to the Src SH2 domain and demonstrated that it inhibits Src-dependent cellular activity and inhibits osteoclast-mediated resorption. RESULTS: AP22161 was designed to bind selectively to the Src SH2 domain by targeting a cysteine residue within the highly conserved phosphotyrosine-binding pocket. AP22161 was tested in vitro for binding to SH2 domains and was found to bind selectively and with high affinity to the Src SH2 domain. AP22161 was further tested in mechanism-based cellular assays and found to block Src SH2 binding to peptide ligands, inhibit Src-dependent cellular activity and diminish osteoclast resorptive activity. CONCLUSIONS: These results indicate that a compound that selectively inhibits Src SH2 binding can be used to inhibit osteoclast resorption. Furthermore, AP22161 has the potential to be further developed for treating osteoporosis.  相似文献   

8.
Using a novel, solid-phase parallel synthetic route and a computational docking program, a series of phosphorylated nonpeptides were generated to determine their structure-activity relationships (SAR) for binding at the SH2 domain of pp60src (Src). A functionalized benzoic acid intermediate was attached to solid support via Rink amide linkage, which upon acid cleavage generated the desired benzamide template-based nonpeptides in a facile manner. Compounds were synthesized using a combination of solid- and solution-phase techniques. Purification using reversed-phase, semipreparative HPLC allowed for quantitative SAR studies. Specifically, this work focused on functional group modifications, in a parallel fashion, designed to explore hydrophobic binding at the pY+3 pocket of the Src SH2 domain.  相似文献   

9.
When using multiple targets and libraries, selection of affinity reagents from phage-displayed libraries is a relatively time-consuming process. Herein, we describe an automation-amenable approach to accelerate the process by using alkaline phosphatase (AP) fusion proteins in place of the phage ELISA screening and subsequent confirmation steps with purified protein. After two or three rounds of affinity selection, the open reading frames that encode the affinity selected molecules (i.e., antibody fragments, engineered scaffold proteins, combinatorial peptides) are amplified from the phage or phagemid DNA molecules by PCR and cloned en masse by a Ligation Independent Cloning (LIC) method into a plasmid encoding a highly active variant of E. coli AP. This time-saving process identifies affinity reagents that work out of context of the phage and that can be used in various downstream enzyme linked binding assays. The utility of this approach was demonstrated by analyzing single-chain antibodies (scFvs), engineered fibronectin type III domains (FN3), and combinatorial peptides that were selected for binding to the Epsin N-terminal Homology (ENTH) domain of epsin 1, the c-Src SH3 domain, and the appendage domain of the gamma subunit of the clathrin adaptor complex, AP-1, respectively.  相似文献   

10.
Isothermal titration calorimetry and X-ray crystallography have been used to determine the structural and thermodynamic consequences associated with constraining the pTyr residue of the pYEEI ligand for the Src Homology 2 domain of the Src kinase (Src SH2 domain). The conformationally constrained peptide mimics that were used are cyclopropane-derived isosteres whereby a cyclopropane ring substitutes to the N-Calpha-Cbeta atoms of the phosphotyrosine. Comparison of the thermodynamic data for the binding of the conformationally constrained peptide mimics relative to their equivalent flexible analogues as well as a native tetrapeptide revealed an entropic advantage of 5-9 cal mol(-1) K(-1) for the binding of the conformationally constrained ligands. However, an unexpected drop in enthalpy for the binding of the conformationally constrained ligands relative to their flexible analogues was also observed. To evaluate whether these differences reflected conformational variations in peptide binding modes, we have determined the crystal structure of a complex of the Src SH2 domain bound to one of the conformationally constrained peptide mimics. Comparison of this new structure with that of the Src SH2 domain bound to a natural 11-mer peptide (Waksman et al. Cell 1993, 72, 779-790) revealed only very small differences. Hence, cyclopropane-derived peptides are excellent mimics of the bound state of their flexible analogues. However, a rigorous analysis of the structures and of the surface areas at the binding interface, and subsequent computational derivation of the energetic binding parameters, failed to predict the observed differences between the binding thermodynamics of the rigidified and flexible ligands, suggesting that the drop in enthalpy observed with the conformationally constrained peptide mimic arises from sources other than changes in buried surface areas, though the exact origin of the differences remains unclear.  相似文献   

11.
The Src homology 3 (SH3) domains are small protein-protein interaction domains that mediate a range of important biological processes and are considered valuable targets for the development of therapeutic agents. We have been developing 2-aminoquinolines as ligands for SH3 domains--so far the only reported examples of entirely small-molecule ligands for the SH3 domains. The highest affinity 2-aminoquinolines so far identified are 6-substituted compounds. In this article, the synthesis of several new 2-aminoquinolines, including 5-, 6- and 7-substituted compounds, for Tec SH3 domain ligand binding studies is presented. As a part of the synthetic investigation, the utility of different methods for the synthesis of 2-aminoquinolines was explored and potentially powerful methods were identified for the synthesis of 2-aminoquinolines with diverse functionality. Of the compounds prepared, the 5-substituted-2-aminoquinolines generally bound with similar affinities to unsubstituted 2-aminoquinoline, whilst the 7-substituted compounds generally bound with similar or lower affinity than unsubstituted 2-aminoquinoline. However, the 6-substituted-2-aminoquinolines generally bound with significantly higher affinity than unsubstituted 2-aminoquinoline. In addition, one 6-substituted-N-benzylated-2-aminoquinoline was also tested for SH3 binding and some evidence for the formation of additional contacts at other regions of the SH3 domain was found. These results provide new and useful SAR information that should greatly assist with the challenge of developing high affinity small-molecule ligands for the SH3 domains.  相似文献   

12.
The noncovalent binding of various peptide ligands to pp60src (Src) SH2 (Src homology 2) domain protein (12.9 ku) has been used as a model system for development of electrospray ionization mass spectrometry (ESI-MS) as a tool to study noncovalently bound complexes. SH2 motifs in proteins are critical in the signal transduction pathways of the tyrosine kinase growth factor receptors and recognize phosphotyrosine-containing proteins and peptides. ESI-MS with a magnetic sector instrument and array detection has been used to detect the protein-peptide complex with low-picomole sensitivity. The relative abundances of the multiply charged ions for the complex formed between Src SH2 protein and several nonphosphorylated and phosphorylated peptides have been compared. The mass spectrometry data correlate well to the measured binding constants derived from solution-based methods, indicating that the mass spectrometry-based method can be used to assess the affinity of such interactions. Solution-phase equilibrium constants may be determined by measuring the amount of bound and unbound species as a function of concentration for construction of a Scatchard graph. ESI-MS of a solution containing Src SH2 with a mixture of phosphopeptides showed the expected protein-phosphopeptide complex as the dominant species in the mass spectrum, demonstrating the method’s potential for screening mixtures from peptide libraries.  相似文献   

13.
Analysis of cellular signal transduction processes increasingly focuses on the systematic characterization of complete protein interaction networks. Understanding the interplay of signaling components enables insight into the molecular basis of diverse diseases such as cancer. This paves the way for the rational design of specific therapeutics. Protein interactions are often mediated by conserved modular domains, e.g., SH3-domains, which recognize proline-rich sequences in their cognate ligands. In the course of this study, different microarray formats (reactive silane monolayers and nitrocellulose on glass slides) and assay work flows were evaluated to develop a microarray based screening assay that permits the reliable identification of interactions between certain target proteins with a set of SH3 domains. Nine representative SH3 domains which were produced and purified as GST-fusion proteins were spotted on the microarray substrates and probed with two well-characterized ligands, the Nef protein from HIV-1 and the human protein Sam68. The best results from these low-density model arrays were obtained with nitrocellulose slides. We show that a straightforward and highly robust detection of ligand binding is achieved by staining with a fluorescently labeled antibody directed against the N-terminal His-tag attached to these proteins. The optimized assay protocol reported here allows for the identification of SH3-interactions with high reproducibility and adequate signal-to-background and signal-to-noise ratios, as well as the quantitative determination of relative binding affinities.  相似文献   

14.
BACKGROUND: Src homology 3 (SH3) domains bind sequences bearing the consensus motif PxxP (where P is proline and x is any amino acid), wherein domain specificity is mediated largely by sequences flanking the PxxP core. This specificity is limited, however, as most SH3 domains show high ligand cross-reactivity. We have recently shown that diverse N-substituted residues (peptoids) can replace the prolines in the PxxP motif, yielding a new source of ligand specificity. RESULTS: We have tested the effects of combining multiple peptoid substitutions with specific flanking sequences on ligand affinity and specificity. We show that by varying these different elements, a ligand can be selectively tuned to target a single SH3 domain in a test set. In addition, we show that by making multiple peptoid substitutions, high-affinity ligands can be generated that completely lack the canonical PxxP motif. The resulting ligands can potently disrupt natural SH3-mediated interactions. CONCLUSIONS: Peptide-peptoid hybrid scaffolds yield SH3 ligands with markedly improved domain selectivity, overcoming one of the principal challenges in designing inhibitors against these domains. These compounds represent important leads in the search for orthogonal inhibitors of SH3 domains, and can serve as tools for the dissection of complex signaling pathways.  相似文献   

15.

Background  

Nef is an HIV-1 accessory protein essential for viral replication and AIDS progression. Nef interacts with a multitude of host cell signaling partners, including members of the Src kinase family. Nef preferentially activates Hck, a Src-family kinase (SFK) strongly expressed in macrophages and other HIV target cells, by binding to its regulatory SH3 domain. Recently, we identified a series of kinase inhibitors that preferentially inhibit Hck in the presence of Nef. These compounds also block Nef-dependent HIV replication, validating the Nef-SFK signaling pathway as an antiretroviral drug target. Our findings also suggested that by binding to the Hck SH3 domain, Nef indirectly affects the conformation of the kinase active site to favor inhibitor association.  相似文献   

16.
Marian C  Huang R  Borch RF 《Tetrahedron》2011,67(52):10216-10221
Synthesis of a potential Src family SH2 domain inhibitor incorporating a 1,4-cis-enediol scaffold is reported. The synthetic route offers straightforward and highly selective access to the enediol and its associated chiral centers. Key steps include stereocontrolled syn-aldol coupling, amide alkynylation, and asymmetric ketone reduction.  相似文献   

17.
Src homology 3 (SH3) domains are highly conserved protein-protein interaction domains that mediate important biological processes and are considered valuable targets for the development of therapeutic agents. In this paper, we report the preparation of a range of new 6-heterocyclic substituted 2-aminoquinolines using Buchwald-Hartwig chemistry. 6-Heterocyclic substitution of the 2-aminoquinoline has provided ligands with increased binding affinity for the SH3 domain relative to the lead compound, 2-aminoquinoline, that are the highest affinity ligands prepared to date. The key step in the synthesis of these compounds required a selective Buchwald-Hartwig amination of an aryl bromide in the presence of an activated heteroaryl chloride. The optimization of reaction conditions to achieve the selective amination is discussed and has allowed for cross-coupling with a range of cyclic amines. Introduction of the amino functionality of the 6-heterocyclic 2-aminoquinolines involved additional Buchwald-Hartwig chemistry utilizing lithium bis(trimethylsilyl)amide as an ammonia equivalent.  相似文献   

18.
An integrated approach is described that allows the domain-specific incorporation of optical probes into large recombinant proteins. The strategy is the combination of two existing techniques, expressed protein ligation (EPL) and in vivo amino acid replacement of tryptophans with tryptophan (Trp) analogues. The Src homology 3 (SH3) domain from the c-Crk-I adaptor protein has been labeled with a Trp analogue, 7-azatryptophan (7AW), using Escherichia coli Trp auxotrophs. Structural, biochemical, and thermodynamic studies show that incorporation of 7AW does not significantly perturb the structure or function of the isolated domain. Ligation of the 7AW-labeled SH3 domain to the c-Crk-I Src homology 2 (SH2) domain, via EPL, generated the multidomain protein, c-Crk-I, with a domain-specific label. Studies of this labeled protein show that the biochemical and thermodynamic properties of the SH3 domain do not change within the context of a larger multidomain protein. The technology described here is likely to be a useful tool in enhancing our understanding of the behavior of modular domains in their natural context, within multidomain proteins.  相似文献   

19.
McMurray JS 《Chemistry & biology》2006,13(11):1123-1124
In this issue of Chemistry & Biology, Schust et al. report the discovery of a small molecule (Stattic) that inhibits the binding of a high affinity phosphopeptide for the SH2 domain of Stat3. Stattic is a new tool for studying Stat3 signaling and demonstrates that the SH2 domain is not a dead target.  相似文献   

20.
Src Homology 2 (SH2) domains are the paradigm of phosphotyrosine (pY) protein recognition modules and mediate numerous cancer-promoting protein-protein complexes. Effective SH2 domain mimicry with pY-binding coordination complexes offers a promising route to new and selective disruptors of pY-mediated protein-protein interactions. We herein report the synthesis and in vitro characterization of a library of coordination complex SH2 domain proteomimetics. Compounds were designed to interact with phosphopeptides via a two-point interaction, principally with pY, and to make secondary interactions with pY+2/3, thereby achieving sequence-selective discrimination. Here, we report that lead mimetics demonstrated high target phosphopeptide affinity (K(a) ~ 10(7) M(-1)) and selectivity. In addition, biological screening in various tumor cells for anticancer effects showed a high degree of variability in cytotoxicity among receptors, which supported the proposed two-point binding mode. Several receptors potently disrupted cancer cell viability in breast cancer, prostate cancer, and acute myeloid leukemia cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号