首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reductions of several substituted acetophenones using supercritical 2-propanol were carried out to estimate the Hammett's reaction constant (ρ=0.33). Also, the reduction of acetophenone using supercritical deuteriated 2-propanol was carried out to determine the rate-determining step. The kinetic isotope effects were observed in the reduction using 2-deuterio-2-propanol (kH/kD=1.6) and O-deuterio-2-propanol (kH/kD=2.0). These findings suggest that the reaction proceeds via a cyclic transition state between acetophenone and 2-propanol similar to that of the Meerwein-Ponndorf-Verley reduction.  相似文献   

2.
It was demonstrated that the reaction of 2,2-bis(trifluoromethyl)oxirane (1) with variety of alcohols could be successfully carried out under phase transfer catalysis conditions using sodium or potassium hydroxide as a base. For example, reaction of CH3OH, C2H5OCH2CH2OH, HOCH2CH2OH with one or two moles of 1 in the presence of the catalyst [(C4H9)4N+HSO4] gives the corresponding tertiary alcohols R[OCH2C(CF3)2OH]n (n=1 or 2) in 43-53% yield, along with some O[CH2C(CF3)2OH]2. Benzyl alcohol and phenol under similar conditions are less active, producing in the reaction with 1 the corresponding adducts ArOCH2C(CF3)2OH in 31-35% yield. Fluorinated alcohols, such as CF3CH2OH, ClCF2CH2OH, HCF2CF2CH2OH have much higher reactivity towards 1 giving ring opening products in 82-97% yield. Even in the reaction of hindered hexafluoro-iso-propanol the corresponding adduct was isolated in 43% yield. Surprisingly, the reaction of iso-propanol and epoxide 1, results in the formation of O[CH2C(CF3)2OH]2 as a major product, isolated in 56% yield. Possible mechanism for the formation of the last product was proposed.  相似文献   

3.
The reactions of benzonitrile in supercritical methanol, ethanol, and 2-propanol were investigated under non-catalytic conditions. In supercritical methanol, benzonitrile was converted to methyl benzoate in high yield. The esterification reaction also occurred in supercritical ethanol to afford ethyl benzoate in moderate yield. The esterification could occur via a route analogous to the Pinner reaction. On the other hand, benzonitrile in supercritical 2-propanol yielded no ester. Benzyl alcohol was the major product in supercritical 2-propanol. We investigated the reaction of the CN bond in supercritical 2-propanol. In supercritical 2-propanol, N-benzylideneaniline was transferred to the reduction product (N-benzylaniline) and hydrolysis products (benzyl alcohol and aniline). The hydrolysis reaction was restricted when the reaction was carried out in supercritical 2-propanol with a low water content. This indicates that the water in the 2-propanol acts as a reagent for the hydrolysis of the CN bond. These results suggested the following reaction process: C6H5CN→C6H5CHNH→C6H5CHO→C6H5CH2OH.  相似文献   

4.
2-Butenyldichloro-n-butyltin (in various cis/trans isomer ratios) reacts readily with neat RCHO (R = CH3, C2H5, (CH3)2CH, and C6H5) at 25°C to give (a) linear alcohols, RCH(OH)CH2CHCHCH3 in the E and Z forms, (b) branched alcohols, RCH(OH)CH(CH3)CHCH2 in the threo and erythro forms, and (c) 2,3,4,6-tetra-substituted tetrahydropyrans (A) as a mixture of cis/trans isomers arising from the CH(CH3)CHCl bond. The maximum yields of these tetrahydropyrans were obtained
by the use of 3–3.5 molar ratios RCHO/tin compound in the absence of solvent, whereas work-up after reactions in CH2Cl2 gave linear, alcohols as the main products. The formation of linear alcohols appears to be stereospecific, as the ratio of E/Z isomers obtained is the same as that in the organotin compound. Tetrahydropyrans are formed preferentially as the trans isomers.  相似文献   

5.
The effect of water on CO2 hydrogenation to produce higher alcohols (C2–C4) was studied. Pt/Co3O4, which had not been used previously for this reaction, was applied as the heterogeneous catalyst. It was found that water and the catalyst had an excellent synergistic effect for promoting the reaction. High selectivity of C2–C4 alcohols could be achieved at 140 °C (especially with DMI (1,3‐dimethyl‐2‐imidazolidinone) as co‐solvent), which is a much lower temperature than reported previously. The catalyst could be reused at least five times without reducing the activity and selectivity. D2O and 13CH3OH labeling experiments indicated that water involved in the reaction and promoted the reaction kinetically, and ethanol was formed via CH3OH as an intermediate.  相似文献   

6.
The optically active quaternary ammonium salt (S)-(?)-α-[(C6H5)CH(CH3)N(CH3)3I] reacts with AlR3 to afford optically active organoaluminum based inclusion compounds, liquid clathrates, of the formula (S)-(?)-α-[(C6H5)CH(CH3)N(CH3)3][Al2R6I] (R=CH3, C2H5). Specific rotation ([α] 25 D ) for the Al(CH3)3 compound was determined to be ?13.19° while that for the Al(C2H5)3 analog was determined to be ?14.30°. There are 13.8 toluene molecules per anionic moiety for the trimethylaluminum based liquid clathrate while there are 15.0 toluene molecules per anion for the corresponding triethylaluminum inclusion compound.  相似文献   

7.
1-Buten-3-yldi-n-butylchlorotin, formed by redistribution of (EZ)-2-butenyltri-n-butyltin and Bu2SnCl2, reacts readily with neat RCHO (R  C2H5, C2H5(CH3)CH, (CH3)2CH, (CH3)3C and C6H5) to give high yields (80–100%) of alcohols of the type RCH(OH)CH2CHCHCH3 only in the Z-configuration. This appears to be the first example of total “cis-preference” in the addition of Grignard-like reagents to carbonyl compounds. The results are discussed in terms of steric requirements around the tin centre which is probably five-coordinate in the transition state.  相似文献   

8.
A general procedure, giving high yields for the synthesis of (Ph3P)2Pt(CCR)2 complexes (R = C6H5, C(CH2)CH3, (CH2)6CCH, CH2OH, CH(OH)CH3, CH(OH)C6H5, CH2CH(OH)CH3, C(OH)(CH3)CH3, C6H10OH, C(OH)(CH3)CH2CH3, CH2NHCH3, CH2NHCH2C6H5, CH2N(CH3)2, CH2N(C2H5)2) is reported. On the basis of the low frequency IR spectra a trans structure is proposed for all complexes. UV spectra are also reported.  相似文献   

9.
The rate constant of the title reaction is determined during thermal decomposition of di-n-pentyl peroxide C5H11O( )OC5H11 in oxygen over the temperature range 463–523 K. The pyrolysis of di-n-pentyl peroxide in O2/N2 mixtures is studied at atmospheric pressure in passivated quartz vessels. The reaction products are sampled through a micro-probe, collected on a liquid-nitrogen trap and solubilized in liquid acetonitrile. Analysis of the main compound, peroxide C5H10O3, was carried out by GC/MS, GC/MS/MS [electron impact EI and NH3 chemical ionization CI conditions]. After micro-preparative GC separation of this peroxide, the structure of two cyclic isomers (3S*,6S*)3α-hydroxy-6-methyl-1,2-dioxane and (3R*,6S*)3α-hydroxy-6-methyl-1,2-dioxane was determined from 1H NMR spectra. The hydroperoxy-pentanal OHC( )(CH2)2( )CH(OOH)( )CH3 is formed in the gas phase and is in equilibrium with these two cyclic epimers, which are predominant in the liquid phase at room temperature. This peroxide is produced by successive reactions of the n-pentoxy radical: a first one generates the CH3C·H(CH2)3OH radical which reacts with O2 to form CH3CH(OO·)(CH2)3OH; this hydroxyperoxy radical isomerizes and forms the hydroperoxy HOC·H(CH2)2CH(OOH)CH3 radical. This last species leads to the pentanal-hydroperoxide (also called oxo-hydroperoxide, or carbonyl-hydroperoxide, or hydroperoxypentanal), by the reaction HOC·H(CH2)2CH(OOH)CH3+O2→O()CH(CH2)2CH(OOH)CH3+HO2. The isomerization rate constant HOCH2CH2CH2CH(OO·)CH3→HOC·HCH2CH2CH(OOH)CH3 (k3) has been determined by comparison to the competing well-known reaction RO2+NO→RO+NO2 (k7). By adding small amounts of NO (0–1.6×1015 molecules cm−3) to the di-n-pentyl peroxide/O2/N2 mixtures, the pentanal-hydroperoxide concentration was decreased, due to the consumption of RO2 radicals by reaction (7). The pentanal-hydroperoxide concentration was measured vs. NO concentration at ten temperatures (463–523 K). The isomerization rate constant involving the H atoms of the CH2( )OH group was deduced: or per H atom: The comparison of this rate constant to thermokinetics estimations leads to the conclusion that the strain energy barrier of a seven-member ring transition state is low and near that of a six-member ring. Intramolecular hydroperoxy isomerization reactions produce carbonyl-hydroperoxides which (through atmospheric decomposition) increase concentration of radicals and consequently increase atmospheric pollution, especially tropospheric ozone, during summer anticyclonic periods. Therefore, hydrocarbons used in summer should contain only short chains (<C4) hydrocarbons or totally branched hydrocarbons, for which isomerization reactions are unlikely. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 875–887, 1998  相似文献   

10.
Decarboxylation of α-allyl-substituted acetoacetic esters afforded α-allyl ketones that were reduced with L-selectride [LiBH(s-Bu)3] in alcohols RCH(OH)CH2CH2CH=C(Me)CH2R'. The latter reacted with methyl 4-hydroxy-3-formylbenzoate and methyl orthoformate in the presence of p-toluenesulfonic acid to provide trans-tetrahydropyrano[3,2-с][1]benzopyran. In reaction of the E-isomer of alcohol Me2CHCH(OH) CH2CH2CH=C(Me)CH2CH2Ph with CF3SO3H a stereoselective cyclization occurred with the formation of 2,6-disubstituted tetrahydropyran; Prins reaction with 4-bromobenzaldehyde and salicylaldehyde in the presence of boron trifluoride etherate also proceeded stereoselectively giving a substituted tetrahydropyrano-[3,2-c][1]-benzopyran.  相似文献   

11.
A series of symmetrical long chain aliphatic ketones of general formula CH3−(CH2)n-CO-(CH2)2−CH3, where n=4,5,6,7 and 8, has been used as hydrogen acceptors from 2-propanol at 573–723 K in the presence of MgO catalyst under flow conditions. The yeilds of the appropriate alcohols exceeded 50%. Above 623 K the consecutive dehydration of the alcohols formed took place with moderate yields leading to internal alkenes. The direct one-step synthesis of C13 alkene from 7-tridecanone has been realized under catalytic transfer reduction (CTR) conditions with high yield (>90%) over a MgO catalyst of enhanced acidity. Part VIII: Appl. Catal. A.:General,150, 77 (1997)  相似文献   

12.
The reaction C2H5 + O2 → C2H5O2 in glassy methanol-d4 and the H-atom abstraction by CH3, C2H5, and n-C4H9 radicals in C2H5OH + C2D5OH and CD3CH2OH + C2D5OH glassy mixtures have been studied by electron spin resonance. The analysis of the dependence of the reaction rates on the concentration of O2 (oxidation) and C2H5OH, CD3CH2OH (H-atom abstraction) has shown that the √t law is not conditioned by the existence of regions characterized by different rate constants.  相似文献   

13.
Experimental excess molar enthalpies HmE at the temperature 298.15 K and atmospheric pressure in a flow microcalorimeter are reported for the ternary mixtures: {x1CH3OH+x2C2H5OH+(1−x1x2)C5H10O} and {x1CH3OH+x2C2H5OH+(1−x1x2)C4H8O2}. The results have been correlated by means of a polynomial equation and used to construct constant excess enthalpy contours. Further, the results have been compared with those calculated from a UNIQUAC associated-solution model taking into consideration the molecular association of like alcohols, solvation between unlike alcohols and alcohols with oxane (tetrahydropyran) or 1,4-dioxane using only binary information.  相似文献   

14.
Ab initio calculations were performed on 18 fluorinated and unfluorinated alcohols at the B3LYP and HF levels with the 6-311G∗∗ basis set. Molar volumes of the alcohols were computed at each level and averaged to produce a scale of relative size. From this, various isosteric replacements of potential use in drug design were suggested: ethyl by FCH2CH2 or HCF2CH2, propyl by CF3CH2, isopropyl by CF3(CH3)CH or (FCH2)2CH, isobutyl or t-butyl by (CF3)2CH, and 3-methyl-2-butyl by CF3(CH3)2C. Calculation of the charge on oxygen and the Wiberg index of the CO bond allowed an electronegativity scale to be constructed for the fluoroalkyl groups. Electronegativity decreased in the order: (CF3)3C>(CF3)2CH>C2F5CH2>CF3CH2>CH3(CF3)2C>HCF2CH2>CF3(CH3)CH>(FCH2)2CH>FCH2CH2>CF3(CH3)2C. This ranking agreed with literature acid dissociation data for the alcohols studied.  相似文献   

15.
Thermochemistry and kinetic pathways on the 2-butanone-4-yl (CH3C(=O)CH2CH2•) + O2 reaction system are determined. Standard enthalpies, entropies, and heat capacities are evaluated using the G3MP2B3, G3, G3MP3, CBS-QB3 ab initio methods, and the B3LYP/6-311g(d,p) density functional calculation method. The CH3C(=O)CH2CH2• radical + O2 association reaction forms a chemically activated peroxy radical with 35 kcal mol−1 excess of energy. The chemically activated adduct can undergo RO−O bond dissociation, rearrangement via intramolecular hydrogen transfer reactions to form hydroperoxide-alkyl radicals, or eliminate HO2 and OH. The hydroperoxide-alkyl radical intermediates can undergo further reactions forming ketones, cyclic ethers, OH radicals, ketene, formaldehyde, or oxiranes. A relatively new path showing a low barrier and resulting in reactive product sets involves peroxy radical attack on a carbonyl carbon atom in a cyclic transition state structure. It is shown to be important in ketones when the cyclic transition state has five or more central atoms.  相似文献   

16.
A 1:1 reaction of [HO(CH2)3]3P with 4-hydroxy-3-methoxy-cinnamaldehyde (coniferaldehyde) or 3,5-dimethoxy-4-hydroxycinnamaldehyde (sinapaldehyde) in acetone at room temperature affords phosphonium zwitterions of the type R3P+CH(4-O?-Ar)CH2CHO; other phosphines [R = Et, n-Bu, (CH2)2CN, and p-Tol] do not react under the same conditions. In alcohols R??OH(D) [R?? = CD3, Et, (CD3)2CD, s-Bu, HOCH2CH2], the above phosphines (except the cyano-derivative) and those where R = i-Pr, Cy, Me2Ph, MePh2 do react within an equilibrium established between the reactants and the zwitterion-hemiacetal products R3P+CH(4-O?-Ar)CH2CH(OH)(OR??) that are formed as a mixture of two diastereomers. The nature of the phosphine and the alcohol affects the equilibrium and the diastereomeric ratio.  相似文献   

17.
Reactions of the diorganolanthanoids R2Yb (R = PhCC or C6F5) with aldehydes (R′CHO) and ketones (R′2CO) (R = Me or Ph) followed by hydrolysis generally gives the alcohols RR′CH(OH) or RR′2COH, but, with benzophenone, reduction giving benzopinacol either competes (R = PhCC) or is predominant (R = C6F5).  相似文献   

18.
The reactions of the alkenes with supercritical organic compounds under non-catalytic conditions were investigated. The H and CR2OH, CH2COCH3 or CH2CN of supercritical alcohols (CHR2OH), acetone (CH3COCH3) or acetonitrile (CH3CN) added to the CC bonds of alkenes form C-C bonds between the α-carbons of the supercritical organic compounds and the sp2 carbons of the alkenes.  相似文献   

19.
Silica gel films were prepared by spin-coating from Si(OC2H5)4-HNO3-H2O-ROH solutions and heated at 200°C where ROH = CH3OH, C2H5OH, CH3OC2H4OH and CH3CH(OH)CH2OH. Striations were observed with an optical microscope, and quantitatively evaluated by surface roughness measurement. A decrease in height and an increase in spacing of the striations were observed when alcohols of high boiling points were used. However, even when the boiling point of the alcohols was high, an evolution of the striations did occur on spin-coating films, which disappeared while keeping the film in the ambient atmosphere. Convections, which might be the source of the striations, were observed in sol layers placed on a stationary substrate irrespective of the boiling point of the alcohols.  相似文献   

20.
Tetracloro-o-benzoquinone reacts with (diphenylacetylene)bis(tirphenylphosphine)platinum(0) to give the novel platinum(II) diphenylacetylene complex, Pt(C6Cl4O2)PhCCPh)(PPh3), (I), which reacts with hydrogen halides to give the compelexes cis-PtX2(PhCCPh((PPh3), (X = Cl or Br). Hydrogen chloride also readily removes the tetrachloro-o-benzoquinoneligand from the adducts Ni(C6Cl4O2)(Ph2PCH2CH2PPh2) and M(C6Cl4O2)(PPh3)2, (M = Pd or Pt) but it has no reaction upon Ir(Cl)(C6Cl4O2)(CO)(PPh3)2 at room temperature. The acetylene in (1) is susceptible to nucleophilic attact and reaction with diethylamine gives the vinyl adduct Pt(C6Cl4O2)(CPhCPh)NHEt2)(PPh3). Other reactions of (I) have also been studied. Attemps to prepare other olefin or acetylene complexes of platinum(II) by the action of tetrachlor-o-benzoquinone on the complexes Pt(L)(PPh3)2, (L = PhCCH,(Et)(Me)(HO)CCCC(OH)(Me)(Et), HOCH2OH, CF3CCCF3, CF2CF2, CF2CH2 or trans-PhCHCHPh) are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号