首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper, we investigate the properties of porous structures anodically grown onto n-InP (100) in HCl. In situ electrochemical characterizations show the pore morphology strongly influences the properties of the InP surfaces. Both dc- and ac-electrochemical measurements reveal an enhancement of the capacitive current and a modification of the electronic distribution at the interface. Photocurrent spectra performed during the pore growth are also strongly modified. For low anodic charges, an increase of the photocurrent with a redshift of the absorption edge is measured. These evolutions can be respectively ascribed (i) to a reflection decrease due to a surface roughening and (ii) to the creation of surface states within the band gap. For higher anodic charges, the photocurrent drops with a narrowing of the spectrum. Using a model based on the “dead” layer, the porous layer is considered as an absorbent film that progressively attenuates the photocurrent of the bulk semiconductor.  相似文献   

2.
A new method has been developed capable of describing the incorporation of electrolyte anions along the pore wall surface and across both the barrier layer and the pore wall oxide after the establishment of the steady state of growth of porous anodic Al2O3 where other methods cannot be applied to obtain reliable results. The knowledge of the nature/composition of anodic oxides as regards the incorporation of species like electrolyte anions is of specific importance for both the understanding of the electrochemical mechanism of oxide production and growth and the scientific and technological applications of porous anodic Al2O3 films. The method consists of the selection and use of a suitable catalytic probe reaction on porous anodic oxides at thicknesses varying from a value near zero up to the maximum limiting thickness and the treatment of the experimental reaction rate results by a properly developed mathematical formalism. This method was employed in anodic Al2O3 films prepared in H2SO4 anodizing electrolyte at a constant bath temperature and different current densities using as a probe reaction the decomposition of HCOOH on these oxides, which is almost exclusively a dehydration reaction, at relatively high reaction temperatures, 350 °C and 390 °C, where the effect of other species except SO4 2− incorporated in the oxide on the reaction rate is eliminated. It has been shown that the fraction of the intercrystallite surfaces occupied by SO4 2− follows a parabola-like distribution. It has a significant value at the pore base surface, depending on the current density, then it passes through a maximum along the pore wall surface and across both the barrier layer and the pore walls near the pore bases at positions depending on the current density and then becomes almost zero at the mouths of the pores of the oxide with the maximum limiting thickness and at both the Al2O3/Al interface and cell boundaries. The maximum value of the surface coverage is almost independent of the current density and is always near 1, showing an almost complete saturation of intercrystalline surfaces at these positions. The above distribution of surface coverage predicts a qualitatively similar distribution of the SO4 2− bulk concentration across both the barrier layer and pore wall oxide around the pore bases. The method may be improved and developed further either for a more detailed investigation of the above films or to investigate films prepared in other pore-forming electrolytes. Received: 30 July 1998 / Accepted: 30 September 1998  相似文献   

3.
Jiakun Zhuang  Long Ma  Yinghua Qiu 《Electrophoresis》2022,43(23-24):2428-2435
As an important property of porous membranes, the surface charge property determines many ionic behaviors of nanopores, such as ionic conductance and selectivity. Based on the dependence of electric double layers on bulk concentrations, ionic conductance through nanopores at high and low concentrations is governed by the bulk conductance and surface charge density, respectively. Here, through the investigation of ionic conductance inside track-etched single polyethylene terephthalate (PET) nanopores under various concentrations, the surface charge density of PET membranes is extracted as ∼−0.021 C/m2 at pH 10 over measurements with 40 PET nanopores. Simulations show that surface roughness can cause underestimation in surface charge density due to the inhibited electroosmotic flow. Then, the averaged pore size and porosity of track-etched multipore PET membranes are characterized by the developed ionic conductance method. Through coupled theoretical predictions in ionic conductance under high and low concentrations, the averaged pore size and porosity of porous membranes can be obtained simultaneously. Our method provides a simple and precise way to characterize the pore size and porosity of multipore membranes, especially for those with sub-100 nm pores and low porosities.  相似文献   

4.
Bipolar membranes (BPMs) are multilayered composite film containing an interface layer sandwiched between cation exchange layer (CEL) and anion exchange layer (AEL), and are capable of dissociating water molecules under reverse bias potential. Woven fabric supported heterogeneous bipolar membranes (HBMs) were synthesized adopting layer-by-layer solvent casting technique. Nanocomposite layer based on sulfonated polyether ether ketone (SPEEK) and GO (graphene oxide) were applied at the interface of CEL/AEL made of cation/anion exchange resins and poly (vinyl chloride) as binder to advance water dissociation in HBMs. Thickness of monopolar layers were initially optimized without any interfacial layer. Introduction of SPEEK interface substantially lowered onset water dissociation potential, Udiss (~1.87 V) relative to the HBM without interface (~3.27 V), which got further reduced (~1.80 V) by nanocomposite (GO + SPEEK) interface. Udiss recorded with SPEEK + GO as interface was much lower than some of the recently reported homogeneous BPM. The NaOH production from NaCl (1.0 mol?L?1) solution in a bipolar membrane electrodialysis set up containing synthesized HBM with nanocomposite interface (SPEEK + GO) was double than that of NaOH concentration obtained with HBM having no interface, where the current density was fixed at 50.0 mA·cm?2. Careful optimization of monopolar/interface layer thickness and composition of nanocomposite interface results in developing cost effective HBMs facilitating water dissociation at lower potential.  相似文献   

5.
Porous alumina films containing parallel capillary pores of uniform size were fabricated by anodically oxidizing high purity aluminum films in phosphoric acid and sulfuric acid solutions. These films were formed into membranes by post-oxidation processing that removes unoxidized aluminum as well as a barrier layer of alumina from the base of the pores. Symmetric membranes were made by oxidizing at constant current density conditions. Two layer composite membranes were made by changing current density during the oxidation process. The thickness, pore density and porosity of each membrane were predicted from the relationships between structural characteristics and processing conditions that were developed in previously reported kinetic studies of anodic oxidation of aluminum.Each membrane was then characterized using permeability measurements. The hydraulic permeability of membranes formed in phosphoric acid and the diffusive permeability of membranes formed in sulfuric acid were measured. A comparison of the measured permeability values to those predicted using the structural characteristics calculated using relationships developed in the kinetic studies shows excellent agreement. These results illustrate that porous alumina membranes can be fabricated with transport characteristics that can be predicted from the processing conditions used during membrane formation.  相似文献   

6.
The kinetics of growth of porous anodic alumina films in pure H2SO4, in mixtures of H2SO4 and Al2(SO4)3 and in Al(HSO4)3, NaHSO4 and KHSO4 electrolytes were studied. The latent physicochemical processes at the pore base surface/electrolyte interface, across the barrier layer, inside the metal/oxide interface and at the pore wall surface/electrolyte interface and their mechanisms were revealed. High field strength equations were formulated describing the ionic migrations from the pore base surface. These showed that, at constant current density and temperature, the inverse of the pore base square diameter depends linearly on the inverse of the H+ activity in the anodizing solution and that this diameter increases with H+ activity, in agreement with the experimental results. The mechanism of electrolyte anion incorporation inside the barrier layer and the real distribution of the anion concentration across both the barrier layer and pore walls were deduced. The effects of the different kinds and concentrations of the electrolyte anions and cations on both the above processes and their mechanisms were also examined. Electronic Publication  相似文献   

7.
The properties of porous glass membranes prepared by acid leaching of sodium borosilicate glasses 8B and 8V and also 8B glass containing small amounts of fluorine and phosphorus (SFP) are comprehensively studied. The effect of the composition and conditions of thermal treatment of the original and porous glasses on their structural (specific surface area, structure resistance coefficient, average pore radius, volume porosity, and filtration factor) and electrokinetic characteristics (conductivity, counterion transport numbers, and electrokinetic potential) in KCl solutions at neutral pH values is studied. It is shown that an increase in thermal treatment temperature T TT of the porous glasses from 120 to 750°C leads to a decrease in structure resistance coefficient β of 8B membranes. For membranes prepared from SFP glass, β values, efficiency coefficients, and counterion transport numbers are virtually independent of T TT at 120–600°C and increase at T TT = 750°C. Specific surface area and volume porosity decrease with a rise in T TT for all studied membranes. The observed regularities of variations in the membrane characteristics are explained by the increasing fraction of large pores because of sintering of small pores with an increase in T TT and by the different amounts of secondary silica in the pore space of porous glasses.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 3, 2005, pp. 299–307.Original Russian Text Copyright © 2005 by Volkova, Ermakova, Sidorova, Antropova, Drozdova.  相似文献   

8.

The through-hole porous anodic aluminum oxide (AAO) membranes were fabricated by a simple two-step anodization of aluminum in 0.3 M oxalic acid, 0.3 M sulfuric acid, and 2 wt.% phosphoric acid solutions under different operating conditions followed by the removal of the remaining Al substrate and the pore opening/widening process. The effect of duration of the second anodizing step on the thickness of the porous oxide layer and the influence of other anodizing conditions such as applied voltage, type of electrolyte, and purity of the substrate on the rate of porous oxide growth were discussed in detail. The pore opening procedure for all synthesized membranes was optimized, and the influence of the duration of chemical etching on structural features of AAO membranes, especially pore diameter, was studied. The rate of pore widening was established for AAO membranes formed in various anodizing electrolytes and for different temperatures of 5 wt.% H3PO4 used for alumina dissolution.

  相似文献   

9.
The through-hole porous anodic aluminum oxide (AAO) membranes were fabricated by a simple two-step anodization of aluminum in 0.3?M oxalic acid, 0.3?M sulfuric acid, and 2?wt.% phosphoric acid solutions under different operating conditions followed by the removal of the remaining Al substrate and the pore opening/widening process. The effect of duration of the second anodizing step on the thickness of the porous oxide layer and the influence of other anodizing conditions such as applied voltage, type of electrolyte, and purity of the substrate on the rate of porous oxide growth were discussed in detail. The pore opening procedure for all synthesized membranes was optimized, and the influence of the duration of chemical etching on structural features of AAO membranes, especially pore diameter, was studied. The rate of pore widening was established for AAO membranes formed in various anodizing electrolytes and for different temperatures of 5?wt.% H3PO4 used for alumina dissolution.  相似文献   

10.
Overall kinetic and potentiometric studies of the growth of porous anodic alumina films in saturated H2SO4+Al2(SO4)3 electrolyte showed non-saturation conditions inside the pores and supersaturation conditions at the pore surface/electrolyte interface where the field and the solid surface catalyse the formation of colloidal Al2(SO4)3 micelles. Suitable high-strength field thermodynamically sustained electrochemical and chemical kinetic equations were formulated. It was shown that the diameter and surface fraction of charge exchange at the pore bases, the real pore wall surface fraction where oxide dissolution occurs, and its rate are strongly affected by the conditions. The mechanism of growth and structure of the films are quite different from those in H2SO4. A mechanism of regular film growth is imposed and the critical current density, above which pitting appears, strongly increases. The formulated theory may predict improved or new Al anodizing technologies. Electronic Publication  相似文献   

11.
Ideally ordered anodic porous TiO2 was fabricated by anodizing an Al/Ti layered specimen. A two-layered specimen composed of an Al top layer and a Ti underlying layer was prepared and then processed by nanoimprinting. The Al top layer was easily pretextured by nanoimprinting owing to its softness and it was straightforward to introduce an ideally ordered pore arrangement by anodization. This pore arrangement was transferred to the underlying Ti layer, resulting in ideally ordered porous structures in TiO2. This process can be applied to the high-throughput fabrication of ideally ordered anodic porous oxides other than TiO2 and also to other metals with high hardness.  相似文献   

12.
Macrodistribution of etching rates of a macroscopically nonuniform, partially dipped, rotating disk electrode of low-carbon steel in 1 M NaCl at pH 1 with photoresist insulation and the density of active rectangular holes being 1.6 holes/mm2 is studied at dimensionless etching rates i 0 avg /i l = 0.2–1.1, where i 0 avg is the average current density per active surface and i l the limiting anodic current density determined by the ionic transport rate. The distribution of the average etching rates in the normal direction is determined by the primary current distribution and is insensitive towards the type of the dissolution rate distribution in a cavity.  相似文献   

13.
Solid conducting biodegradable composite membranes have shown to enhance nerve regeneration. However, few efforts have been directed toward porous conducting biodegradable composite membranes for the same purpose. In this study, we have fabricated some porous conducting poly(dl-lactide) composite membranes which can be used for the biodegradable nerve conduits. The porous poly(dl-lactide) membranes were first prepared through a phase separation method, and then they were incorporated with polypyrrole to produce porous conducting composite membranes by polymerizing pyrrole monomer in gas phase using FeCl3 as oxidant. The preparation conditions were optimized to obtain membranes with controlled pore size and porosity. The direct current conductivity of composite membrane was investigated using standard four-point technique. The effects of polymerization time and the concentration of oxidant on the conductivity of the composite membrane were examined. Under optimized polymerization conditions, some composite membranes showed a conductivity close to 10−3 S cm−1 with a lower polypyrrole loading between 2 and 3 wt.%. A consecutive degradation in Ringer's solution at 37 °C indicated that the conductivity of composite membrane did not exhibit significant changes until 9 weeks although a noticeable weight loss of the composite membrane could be seen since the end of the second week.  相似文献   

14.
Chitosan macroporous membranes with asymmetric morphology were obtained by using an inorganic porogen agent (SiO2). Chitosan/silica ratios used were 1:1, 1:3, and 1:5 w/w. A methodology to obtain asymmetric membranes with control of porosity and average pore size was proposed. The porous membranes were obtained taking advantage of the opposite solubility characteristics of chitosan and silica (4–20 μm). The membranes were characterized by SEM and water sorption capacity. The porosity was calculated by the relationship between dense and macroporous membranes. The SEM images of both surfaces and cross-section of the membranes confirmed their asymmetric morphology. Using a double-cell method, the permeability coefficients of two model drugs (sodium sulfamerazine and sulfametoxipyridazine) were determined. The effects of porous layer, drug type, concentration and temperature were evaluated. The results revealed that the increase in porosity results in significant differences in permeability and that the effects of drug concentration and bath temperature become less pronounced as porosity increases. The mass transport was analyzed in terms of pore-flow mechanism and the solution-diffusion mechanism. The results showed that the methodology was very efficient to yield asymmetric membranes with good mechanical resistance, control of porous size and dense layer thickness and that these membranes can potentially be used to the transport of drugs.  相似文献   

15.
In this paper, we demonstrate that nanoscale membrane electrode assemblies, functioning in a H2/O2 fuel cell, can be fabricated by impregnation of anodic alumina porous membranes with Nafion® and phosphotungstic acid. Porous anodic alumina is potentially a promising material for thin-film micro power sources because of its ability to be manipulated in micro-machining operations. Alumina membranes (Whatman, 50 μm thick, and pore diameters of 200 nm) impregnated with the proton conductor were characterized by means of scanning electron microscopy, X-ray diffraction, and thermal analysis. The electrochemical characterization of the membrane electrode assemblies was carried out by recording the polarization curves of a hydrogen–oxygen 5 cm2 fuel cell working at low temperatures (25?÷?80 °C) in humid atmosphere. Our assemblies realized with alumina membranes filled with phosphotungstic acid and Nafion® reach respectively the peak powers of 20 and 4 mW/cm2 at room temperature using hydrogen and oxygen as fuel and oxidizer.  相似文献   

16.
In sol–gel processing, porous ceramic membranes can be prepared by sol-coating porous substrates and drying for gelling, followed by a firing process. Ceramic membranes prepared by sol–gel processing can be categorized into amorphous materials such as silica, and crystalline materials such as alumina and titania. Amorphous silica networks, which can be prepared by the polymeric sol route, have ultra-microporous pores that allow small molecules such as helium and hydrogen to permeate. On the other hand, crystalline materials, which are mostly prepared by the colloidal sol route, have nano-sized pores in the range of one to several nanometers. In this article, sol–gel derived SiO2 and TiO2 membranes with controlled pore sizes in the range of sub-nano to nanometers will be reviewed with respect to membrane preparation and to their application in the separation of the gas and liquid phases. Ceramic membranes with high performance can be obtained by precise control of membrane structures (pore size, pore size distribution, thickness, pore shape, etc.) and membrane materials (SiO2, TiO2, composite oxide, hybrid materials, etc.). Nano/subnano-tuning of porous ceramic membranes is quite important for the improvement of membrane permeability and selectivity.  相似文献   

17.
A one-stone, two-bird method to integrate the soft porosity and electrical properties of distinct metal–organic frameworks (MOFs) into a single material involves the design of conductive-on-insulating MOF (cMOF-on-iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF-on-iMOF heterostructures using a seeded layer-by-layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF-on-iMOF heterostructures exhibit enhanced selective sorption of CO2 compared to the pristine iMOF (298 K, 1 bar, S from 15.4 of ZIF-7 to 43.2–152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF-on-iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical “shape memory” toward acetone and CO2. This behavior was observed through the guest-induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide-angle X-ray scattering measurements.  相似文献   

18.
The reduction behaviour of porous lead dioxide electrodes is shown to be independent of rotation speed in a large excess of 5 M H2SO4. The reduction peak is broadened by the porosity. This porosity broadening is interpreted in terms of the reaction being driven more deeply into the pore structure as the front of the electrode becomes progressively more ressstive. The effect of different potential sweep rates on the current response and the effects of progressive redox cycles can be fully explained on this model.  相似文献   

19.
This work shows that it is possible to obtain self-standing Pd nanowires into anodic alumina membranes by a simple metal displacement deposition. By using a proper arrangement, specifically designed in order to optimize the process, polycrystalline Pd nanowires were deposited from a solution containing Pd(NH3)4(NO3)2 as precursor. Morphological analysis showed the formation of perfectly aligned nanowires with a uniform diameter throughout the entire length. This last parameter was controlled by both the deposition time and the ratio between the anodic area (active metal) and the cathodic area (pore bottom).  相似文献   

20.
Abstract  Aluminium anodization behavior in ammonium sebacate solution (w = 4%) in ethylene glycol, and in several H3PO4-containing electrolytes, has been investigated. A new mechanism is proposed for the formation of porous anodic films. The model emphasizes the close relationship between pore generation and oxygen evolution. PO4 3− ions incorporated in the anodic films behave as the primary source of avalanche electrons. It is the avalanche electronic current through the barrier film that causes oxygen evolution during anodization. When growth of anodic oxide and oxygen evolution occur simultaneously at the aluminium anode, cavities or pores are formed in the resulting films. Accordingly, the mechanisms of growth of barrier and porous films are not very different in nature. These findings are a decisive new step towards full understanding of the nature of anodic alumina films. Graphical abstract     相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号