首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial and temporal variations of radon concentration in soil air   总被引:3,自引:0,他引:3  
The spatial and temporal variability of the soil gas radon concentration in typical soils is studied. The results obtained will be further used to predict indoor radon levels. To this end, 50 measuring points along geologic sections with known physicogeological parameters of soils were chosen. The soil gas radon concentration was measured with SSNTDs (Type III-b) at a depth of 70 cm from June to October, 2000. The radon exposure time was 72–96 h. The average radon concentration in the soil pore air for an urban area was 11 kBqm−3 (1.7–24 kBqm−3). Small-scale spatial variations in the concentration were found to lie within a narrower range. The effect of meteorological conditions on the soil gas radon concentration was investigated by performing 8 series of measurements at 5 closely spaced points in September–October, 2000. A significant correlation was found between the soil radon concentration and atmospheric pressure (K=−0.86), ambient temperature (K=0.75), and soil temperature (K=0.75).  相似文献   

2.
Soil radon depth dependence   总被引:4,自引:0,他引:4  
The knowledge of the soil radon levels is important for the planning and construction of new buildings in order to estimate the radon risk and to classify the ground for construction purposes.

The purpose of this investigation was to study in situ the radon levels at various depths 0–2 m in terrain where the geology is comparatively uniform. The data from the measurements was fitted to simple functions in order to facilitate future extrapolations of radon levels from various depths to 1 m at measurements anywhere.

The plastic film Kodak LR 115 was used as the detector of the radon levels at four different depths in the interval 0–2 m. The measurements were made along a 2200 m long profile at 16 different points.  相似文献   


3.
An active radon measurement device has been developed to be used in workplaces with a relative humidity of 100% for spot measurements of radon concentration. A mathematical model based on the convective–diffusive transport equation is used in the design of this system, which has been used to measure the radon concentration in the Pozalagua cave (Biscay, at Northern of Spain). From the obtained radon values the public and workers doses have been obtained.  相似文献   

4.
牛冠毅  陈剑杰  王君 《计算物理》2012,29(2):239-244
基于连续介质力学原理,建立氡在地下坑道周围山体内运移的-维径向对称模型,分析在浓度扩散和气体渗流条件下,坑道周围山体内氡浓度分布,并给出氡浓度的解析表达式.用有效运移距离的概念,定量描述对坑道内氡浓度有影响的山体范围,给出有效运移距离和有效孔隙率、比渗流速度之间的关系式,同时给出坑道壁面上氡析出率的表达式.  相似文献   

5.
Soil radon behavior related to the volcanic eruptive period 1997–1999 of Popocatepetl volcano has been studied as a function of the volcanic activity. Since the volcano is located 60 km from Mexico City, the risk associated with an explosive eruptive phase is high and an intense surveillance program has been implemented. Previous studies in this particular volcano showed soil radon pulses preceding the initial phase of the eruption. The radon survey was performed with LR-115 track detectors at a shallow depth and the effect of the soil moisture during the rainy season has been observed on the detectors response. In the present state of the volcanic activity the soil radon behavior has shown more stability than in previous eruptive stages.  相似文献   

6.
Radon is being measured continuously in spring water and soil-gas at Badshahi Thaul Campus, Tehri Garhwal in Himalayan region by using radon Emanometer since December 2002. An effort was made to correlate the variance of radon concentrations in spring water and soil-gas with meteorological parameters at the same location. The main meteorological parameters that affect the radon emanation from host material is surrounding temperature, barometric pressure, wind velocity, rain fall and water level of the spring. The correlation coefficient between radon concentration in spring water and different atmospheric parameters was computed. The correlation coefficient between radon concentration in spring water and the maximum atmospheric temperature was 0.3, while it was 0.4 for minimum atmospheric temperature at the monitoring site. The correlation coefficient for radon concentration in spring water with minimum and maximum relative humidity was 0.4. Spring water radon concentration was found positively correlated (0.6) with water discharge rate of the spring. A weak correlation (0.09) was observed between the radon concentration in spring water and rain fall during the measurement period. As temperature of near surface soil increases, the radon emanation coefficient from the soil surface also increases. The possible effects due to global warming and other climatic changes on environment radiation level were also discussed in detail.   相似文献   

7.
Emanation power of radon and its concentration in soil and rocks   总被引:1,自引:0,他引:1  
Experiments were carried out to determine emanation power and radon levels in different kinds of soil and bedrocks. Seven stations were selected in the investigated district, which covers an area of about 2300 km2 in the northern and western part of Jordan. Five holes were dug in each station at different depths. Two to three passive dosimeters using plastic detectors (CR-39) were put in each hole. Two weeks later, the dosimeters were collected and chemically etched. Some soil and rock samples from the study area were collected and analyzed for radioactive nuclides using γ-ray spectroscopy. The correspondence between radon levels in the soil gas and its precursor concentrations is not clear. However, the study confirms the exponential increase in radon level with depth. In general, Al-Hisa phosphate limestone showed the highest radon concentration while Amman silicified limestone showed the lowest concentration.  相似文献   

8.
Radon data accumulated during 1992–1999 in the grid (30–34°N, 74–78°E) in N-W Himalaya have been anlaysed vis a vis seismic data recorded in the same area, supplied by Indian Meteorological Department (IMD) network. In general, there is a positive correlation between the total radon emission and the microseismicity in the area under investigation. The earthquake magnitude has moderate positive correlation with epicentral distance and low positive correlation with amplitude of radon precursory signal, whereas both show low negative correlation between them.

Empirical scaling relations are proposed using the best fit straight line from the log-linear graphs between magnitude of the events and log of the product of amplitude of radon anomaly and epicentral distance. The error between the recorded and calculated magnitude is also taken into account. The error range is higher at lower epicentral distances and magnitudes, showing that the local geology and tectonics have predominant influence on radon signals.  相似文献   


9.
The sensitivity of a 226Ra determination method of water samples by SSNTD was measured as a function of storage temperature during exposure. The method is based on an etched track type radon monitor, which is closed into a gas permeable foil and is immersed in the water sample. The sample is sealed in a glass vessel and stored for an exposure time of 10–30 days. The sensitivity increased more than a factor of two when the storage temperature was raised from 2 °C to 30 °C. Temperature dependence of the partition coefficient of radon between water and air provides explanation for this dependence. For practical radio-analytical application the temperature dependence of the calibration factor is given by fitting the sensitivity data obtained by measuring 226Ra standard solutions (in the activity concentration range of 0.1–48.5 kBq m−3) at different storage temperatures.  相似文献   

10.
Soil radon has been monitored at two fixed stations in the northern flank of Popocatepetl Volcano, a high risk volcano located 60 km SE from Mexico City. Water samples from three springs were also studied for radon as well as major and trace elements. Radon in the soil was recorded using track detectors. Radon in the water samples was evaluated using the liquid scintillation method and an Alphaguard. The major elements were determined through conventional chemical methods and trace elements using an ICP-MS equipment. Soil radon levels were low, indicating a moderate diffuse degassing through the flanks of the volcano. Groundwater radon had almost no relation with the eruptive stages. Water chemistry was stable in the reported time (2000–2002).  相似文献   

11.
Radon concentrations in soil gas were measured by the track-etch method in 60 shallow holes, each 70 cm deep and supported by a capped plastic tube, along several major faults in central California during 1975–1985. This set of data was analyzed to investigate the seasonal variability of soil-gas radon concentration in an area which has various geological conditions but similar climate. The results show several different patterns of seasonal variations, but all of which can be largely attributed to the water-saturation and moisture-retention characteristics of the shallow part of the soil. During the rainy winter and spring seasons, radon tended to be confined underground by the water-saturated surface soil which had much reduced gas permeability, while during the sunny summer and autumn seasons, it exhaled more readily as the soil became drier and more permeable. At several sites located on creeping faults, the radon-variation patterns changed with time, possibly because of disturbance of site condition by fault movement.  相似文献   

12.
M. Irfan  M. Khan  W.A. Khan  M. Ayaz 《Physics letters. A》2018,382(30):1992-2002
Nanofluids are forthcoming new generation heat transfer fluids, which have been scrutinized precisely, in current years. Thermophysical assets of these fluids have noteworthy impact on their heat transfer features. In this current investigation a mathematical relation for two dimensional (2D) flow of magnetite Maxwell nanofluid influenced by a stretched cylinder is established. To visualize the stimulus of Brownian moment and thermophoresis phenomena on Maxwell fluid Buongiorno's relation has been considered. Moreover, heat sink/source and convective condition are also presented for heat transport mechanism. The homotopic scheme has been developed for the solutions of nonlinear ordinary differential equations (ODEs). The achieved outcomes are planned and consulted in aspects for somatic parameters. It is noteworthy that the velocity of Maxwell fluid display conflicting performance for curvature parameter and Deborah number. It is also reported that the liquid velocity decays for magnetic parameter, whereas the nanoliquid temperature and concentration field enhance for magnetic parameter. Furthermore, the liquid temperature intensifies for the progressive values of thermophoresis parameter and Brownian motion. Additionally, endorsement of current significances is organized via benchmarking with earlier famous limiting situations and we pledge a marvelous communication with these outcomes.  相似文献   

13.
A model for the simulation of the electron energy distribution in nanoscale metal–oxide–semiconductor field-effect transistor (MOSFET) devices, using a kinetic simulation technique, is implemented. The convective scheme (CS), a method of characteristics, is an accurate method of solving the Boltzmann transport equation, a nonlinear integrodifferential equation, for the distribution of electrons in a MOSFET device. The method is used to find probabilities for use in an iterative scheme which iterates to find collision rates in cells. The CS is also a novel approach to 2D semiconductor device simulation. The CS has been extended to handle boundary conditions in 2D as well as to calculation of polygon overlap for polygons of more than three sides. Electron energy distributions in the channel of a MOSFET are presented.  相似文献   

14.
Radon anomalies along faults in North of Jordan   总被引:1,自引:0,他引:1  
Radon emanation was sampled in five locations in a limestone quarry area using SSNTDs CR-39. Radon levels in the soil air at four different well-known traceable fault planes were measured along a traverse line perpendicular to each of these faults. Radon levels at the fault were higher by a factor of 3–10 than away from the faults. However, some sites have broader shoulders than the others. The method was applied along a fifth inferred fault zone. The results show anomalous radon level in the sampled station near the fault zone, which gave a radon value higher by three times than background. This study draws its importance from the fact that in Jordan many cities and villages have been established over an intensive faulted land. Also, our study has considerable implications for the future radon mapping. Moreover, radon gas is proved to be a good tool for fault zones detection.  相似文献   

15.
Radon exposure assessment in case–control studies on radon and lung cancer is generally based on contemporary radon concentration measurements, which can be affected by significant changes in the building structures or in living habits. Another method to estimate the radon exposure of the subjects is the recently developed retrospective dosimetry technique based on the 210Po surface activity from glass objects. In order to compare the results obtained by the two methods, a study has been carried out in a sample of 26 dwellings in Rome, with radon concentration values ranging from 28 to 623 Bqm−3. Retrospective detectors based on CR-39 and LR 115 were exposed on 50 glass objects in bedrooms and living rooms. The correlation factor between the two sets of data, after removing six extreme values, is 0.67, which is similar to results obtained in other validation studies of similar sample size. The correlation increases to 0.83 if the 21 objects exposed in non-smoky dwellings are selected, while it vanishes to −0.01 for the 23 objects exposed in smoky dwellings, suggesting quite larger variations of plate-out in presence of environmental tobacco smoke.  相似文献   

16.
The pressure dependence of flame propagation in an Al/CuO nanoscale thermite was studied. Experiments were performed by loosely packing the Al/CuO mixture in an instrumented burn tube, which was placed in a large volume, constant pressure chamber with optical windows. A high-speed camera was used to take photographic data, and six pressure transducers equally spaced along the length of the burn tube were used to measure the local transient pressure. Ambient pressures were varied between 0 and 15 MPa, and three different pressurizing gases were used: argon, helium, and nitrogen. Three modes of propagation were observed. The pressure at which the mode of propagation changed was similar for argon and nitrogen, however, when pressurized with helium, transition occurred at lower pressures. In the low-pressure regime (0–2 MPa) a constant velocity mode with speeds on the order of 1000 m/s was observed. In this region, a convective mode of propagation was dominant. An accelerating regime was observed for a pressure range of approximately 2–5 MPa in argon and nitrogen, with speeds ranging from 100 to 800 m/s. In helium, however, if an accelerating region existed it occurred over a narrow pressure range which was not observed in the present experiments. An oscillating regime was observed in all three gases, in a pressure range of 5–9 MPa for argon and nitrogen, and a range of 2–4 MPa for helium. Velocities in this region are bimodal, and differ by orders of magnitude, suggesting that the propagation mechanism was oscillating between convective and conductive. At relatively high ambient pressures, a constant velocity mode with speeds on the order of 1 m/s was observed for all three gases. The conductive mode of propagation was likely dominant in this region.  相似文献   

17.
An experimental study has been carried out in an inhabited single-family house. Radon concentration in the different rooms of the house and in its garden soil has been measured with Nuclear Track Detectors. No high differences of radon concentration have been observed between the different rooms of the house, so that the proximity of the room level to the soil seems not to affect the radon concentration. The annual radon concentration obtained indoors and in the soil has been respectively 35 Bq m−3 and 24 kBq m−3. Since radon generation in the source, entry into indoor air and accumulation indoors depend on several parameters, the effect of a specific parameter on indoor radon concentration is difficult to explain from the radon measurements only. The RAGENA (RAdon Generation, ENtry and Accumulation indoors) model has been adapted to the room in the basement of the house. The mean radon concentration values obtained with the model are compared to experimental results derived from measurements using Nuclear Track Detectors. The use of the model, together with the experimental study, has allowed characterising radon sources, levels and entry mechanisms in the house. The concrete walls have been found to be the most relevant radon source, while the contribution of the soil is negligible in this case. The indoor radon level is given by the balance of the permanent exhalation from concrete and the removal due to ventilation. The indoor radon levels are close to the average value for the Barcelona area which, in turn, is close to the world averaged value.  相似文献   

18.
杨展康  牛奕 《计算物理》2021,38(4):456-464
根据计算流体力学以及氡的物理性质,建立具有硐室的独头巷道内氡的三维稳态传输模型,采用Fluent软件求解控制方程,使用UDF实现巷道内壁氡的析出和氡的衰变,得到独头巷道内的风场结构及氡的浓度分布.研究发现:通风量一定时,温度对氡的浓度影响显著,巷道内温度越高,巷道各处氡浓度越高.整个巷道硐室氡浓度最大,相比于修建防氡围...  相似文献   

19.
《Radiation measurements》2007,42(3):486-490
Measurements of radon concentration in soil gas have been carried out using a bubbling system in which the soil gas is drawn through an active pumping to bubble a liquid absorber (olive oil) for the deposition of the soil gas in it. After the bubbling process, the absorber is then taken for gamma-ray measurements. Gamma-ray photopeaks from the 214Pb and the 214Bi radon progeny are considered for the detection of the 222Rn gas to study the concentration levels for radon soil gas. Results for some field measurements were obtained and compared with results obtained using AlphaGuard radon gas monitor. The technique provides a possible approach for the measurements of radon soil gas with gamma-ray spectrometry.  相似文献   

20.
A miniature diffusion chamber with a 25 × 4 × 0.5 mm CR-39 track etch detector (Pershore Moulding Ltd.), mounted on the 1.1 m long pole has been developed for radon gas measurements at 1 meter depth in the soil. For chemically etched CR-39 (7h, 70°C NaOH) and automatic track analysis the lowest detection limit of the chamber was found to be 0.5 MBq h m−3 and the useful exposure range from 2 to 20 MBq h m−3. The typical exposure time in the soil is between 2 to 14 days. The chamber was tested against the active AlphaGUARD PQ-2000 (Genitron Instruments GmbH) probe. The test yielded consistent results for soils with typical values of permeability and which are not miniature with water. The pilot measurements of radon gas in soil conducted with the miniature diffusion chambers around 48 buildings in Kraków and Silesia regions yielded an average radon concentration of 13 kBq m−3. The chambers are to be applied to measure radon concentration in soil before constructing new houses in order to avoid high radon risk areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号