首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conformational interconversions of four [2]catenanes (1-4) containing a dibenzo-34-crown-10 ether (BPP34C10) interlocked with rings containing two 4,4'-dipyridiniums tethered by 1,3-bis(ethyloxy)phenyl and bis(p-benzyl)methyl spacers have been studied by VT 1H NMR spectroscopy. Symmetrically placed blocking groups on thickened tethers enabled either pathway for circumrotation of the BPP34C10 between isoenergetic sites to be blocked. On the basis of chemical shifts of the BPP34C10, its internal p-hydroquinone forms pi-pi-stacking interactions with only one 4,4'-dipyridinium ring at a time. The activation barrier for migration along either open tether was approximately 11.5 kcal/mol. This study demonstrates an ability to select the pathway for conformational interconversions in these [2]catenanes containing the rigid bis(p-benzyl)methyl tether and the lowering the barrier for interconversion through destabilization of the ground state structures.  相似文献   

2.
The template-directed syntheses, employing bisparaphenylene-[34]crown-10 (BPP34C10), 1,5-dinaphthoparaphenylene-[36]crown-10 (1/5NPPP36C10), and 1,5-dinaphtho-[38]crown-10 (1/5DNP38C10) as templates, of three [2]catenanes, whereby one of the two bipyridinium units in cyclobis(paraquat-p-phenylene) is replaced by a bipicolinium unit, are described. The crude reaction mixtures comprising the [2]catenanes all contain slightly more of the homologous [3]catenanes, wherein a "dimeric" octacationic cyclophane has the crown ether macrocycles encircling the alternating bipyridinium units with the bipicolinium units completely unfettered. X-ray crystallography, performed on all three [2]catenanes and two of the three [3]catenanes reveals co-conformational and stereochemical preferences that are stark and pronounced. Both the [3]catenanes crystallize as mixtures of diastereoisomers on account of the axial chirality associated with the picolinium units in the solid state. Dynamic (1)H NMR spectroscopy is employed to probe in solution the relative energy barriers for rotations by the phenylene and pyridinium rings in the tetracationic cyclophane component of the [2]catenanes. Where there are co-conformational changes that are stereochemically "allowed", crown ether circumrotation and rocking processes are also investigated for the relative rates of their occurrence. The outcome is one whereby the three [2]catenanes containing BPP34C10, 1/5NPPP36C10, and 1/5DNP38C10 exist as one major enantiomeric pair of diastereoisomers amongst two, four, and eight diastereoisomeric pairs of enantiomers, respectively. The diastereoisomerism is a consequence of the presence of axial chirality together with helical and/or planar chirality in the same interlocked molecule. These [2]catenanes constitute a rich reserve of new stereochemical types that might be tapped for their switching and mechanical properties.  相似文献   

3.
The translational isomerizations of nine [2]catenanes (2-10) containing an electron-rich dibenzo-34-crown-10 ether (BPP34C10) interlocked with rings containing an unsymmetric 4-substituted (chloro, ethyl, or hexyl) resorcinol-based tether linking two electron-deficient dipyridyl groups have been studied by variable temperature (VT) 1H NMR spectroscopy. The second symmetric tether between the dipyridyl groups was a large 5-(4-tert-butylphenyl)-1,3-xylyl (catenanes 2-4), a narrower 1,3-xylyl (catenanes 5-7), or a narrow 1,4-xylyl (catenanes 8-10) group. The presence of the unsymmetrically placed substituent on the resorcinol tether substantially affected the binding energy of the BPP34C10 ring when pi-stacked over either of the dipyridyl groups; the equilibrium constant between the bistable states was found to range from 1.5 to 3.5. The origin of these energy differences is postulated to stem from an unsymmetric twisting of the resorcinol tether to minimize interaction between the 4-substituent and the ethoxy group at the 3-position. The activation barriers for passage over the 4-substituted resorcinol-based tether were 12.5, 13, and 15 kcal/mol for the chloro, ethyl, and hexyl substituents, respectively.  相似文献   

4.
The properties of tetrathiafulvalene dimers ([TTF]22+) and the functionalized ring‐shaped bispropargyl (BPP)‐functionalized TTF dimers, [BPP–TTF]22+, found at room temperature in charged [3]catenanes, were evaluated by M06L calculations. The results showed that their isolated [TTF]22+ and [BPP–TTF]22+ dimers are energetically unstable towards dissociation. When enclosed in the 4+‐charged central cyclophane ring of charged [3]catenanes (CBPQT4+), [TTF]22+ and [BPP–TTF]22+ dimers are also energetically unstable with respect to leaving the CBPQT4+ ring; since the barrier for the exiting process is only about 3 kcal mol?1, that is, within the reach of thermal energies at room temperature (neutral [TTF]20 dimers are stable within the CBPQT4+ ring). However, the [BPP–TTF]22+ dimers in charged [3]catenanes cannot exit, because this would imply breaking the covalent bonds of the BPP–TTF+ macrocycle. Finally, it was shown that the [TTF]22+, [BPP–TTF]22+ dimers, and charged [3]catenanes are energetically stable in solution and in crystals of their salts, in the first case due to the interactions with the solvent, and in the second case mostly due to cation–anion interactions. In these environmental conditions at room temperature the TTF units of the [BPP–TTF]22+ dimers make short contacts, thus allowing their SOMO orbitals to overlap: a room‐temperature multicenter long bond is formed, similar to those previously found in other [TTF]22+ salts and their solutions.  相似文献   

5.
A molecular-level abacus-like system driven by light inputs has been designed in the form of a [2]rotaxane, comprising the pi-electron-donating macrocyclic polyether bis-p-phenylene-34-crown-10 (BPP34C10) and a dumbbell-shaped component that contains 1) a Ru(II) polypyridine complex as one of its stoppers in the form of a photoactive unit, 2) a p-terphenyl-type ring system as a rigid spacer, 3) a 4,4'-bipyridinium unit and a 3,3'-dimethyl-4,4'-bipyridinium unit as pi-electron-accepting stations, and 4) a tetraarylmethane group as the second stopper. The synthesis of the [2]rotaxane was accomplished in four successive stages. First of all, the dumbbell-shaped component of the [2]rotaxane was constructed by using conventional synthetic methodology to make 1) the so-called "west-side" comprised of the Ru(II) polypyridine complex linked by a bismethylene spacer to the p-terphenyl-type ring system terminated by a benzylic bromomethyl function and 2) the so-called "east-side" comprised of the tetraarylmethane group, attached by a polyether linkage to the bipyridinium unit, itself joined in turn by a trismethylene spacer to an incipient 3,3'-dimethyl-4,4'-bipyridinium unit. Next, 3) the "west-side" and "east-side" were fused together by means of an alkylation to give the dumbbell-shaped compound, which was 4) finally subjected to a thermodynamically driven slippage reaction, with BPP34C10 as the ring, to afford the [2]rotaxane. The structure of this interlocked molecular compound was characterized by mass spectrometry and NMR spectroscopy, which also established, along with cyclic voltammetry, the co-conformational behavior of the molecular shuttle. The stable translational isomer is the one in which the BPP34C10 component encircles the 4,4'-bipyridinium unit, in keeping with the fact that this station is a better pi-electron acceptor than the other station. This observation raises the question- can the BPP34C10 macrocycle be made to shuttle between the two stations by a sequence of photoinduced electron transfer processes? In order to find an answer to this question, the electrochemical, photophysical, and photochemical (under continuous and pulsed excitation) properties of the [2]rotaxane, its dumbbell-shaped component, and some model compounds containing electro- and photoactive units have been investigated. In an attempt to obtain the photoinduced abacus-like movement of the BPP34C10 macrocycle between the two stations, two strategies have been employed-one was based fully on processes that involved only the rotaxane components (intramolecular mechanism), while the other one required the help of external reactants (sacrificial mechanism). Both mechanisms imply a sequence of four steps (destabilization of the stable translational isomer, macrocyclic ring displacement, electronic reset, and nuclear reset) that have to compete with energy-wasteful steps. The results have demonstrated that photochemically driven switching can be performed successfully by the sacrificial mechanism, whereas, in the case of the intramolecular mechanism, it would appear that the electronic reset of the system is faster than the ring displacement.  相似文献   

6.
Abstract

The spectroscopic and electrochemical properties of two cyclophanes containing one and, respectively, two 2,7-diazapyrenium electron-acceptor units, and of their [2]catenanes with macrocycles containing two dioxybenzene or dioxynaphthalene electrondonor units have been investigated. The absorption spectra of the catenanes show weak and broad bands in the visible region, assigned to charge-transfer (CT) interactions. The very strong and structured fluorescence (298 K) and the structured fluorescence and phosphorescence (77 K) of the diazapyrenium unit are maintained in the two cyclophanes, but they are no longer present in the [2]catenanes, presumably because of a quenching process caused by the lower energy CT excited states. Each diazapyrenium unit undergoes two distinct reduction processes - only the first one of which is fully reversible - that are hardly affected at all when the diazapyrenium units are incorporated in a cyclophane. In the [2]catenanes, the CT interaction displaces the reduction processes of the diazapyrenium units toward more negative potentials. The results obtained for the diazapyrenium and previously investigated 4,4′-bipyridinium salts, selected cyclophane derivatives, and some [2]catenanes obtained by interlocking the cyclophanes with macrocycles containing two dioxyaromatic electron-donor units are compared and discussed.  相似文献   

7.
Three [3]catenanes with cavities large enough to accommodate aromatic guests have been designed and synthesized (yields = 5-20 %) by means of kinetically controlled self-assembly processes. The X-ray structural analysis of one of three [3]catenanes confirmed the presence of a rectangular cavity (dimensions = 7 x 11 A) lined by pi-electron-rich recognition sites and hydrogen-bond acceptor groups. In spite of their apparently ideal recognition features, none of these [3]catenanes bind guests incorporating a pi-electron-deficient bipyridinium unit. However, the template-directed syntheses of the [3]catenanes also produce, in yields of 2-23%, [2]catenanes incorporating a 1,5-dioxynaphtho[38]crown-10 interlocked with a bipyridinium-based tetracationic cyclophane. The X-ray structural analyses of two of these [2]catenanes revealed that a combination of [pi...pi] and [C-H...pi] interactions is responsible for the formation of supramolecular homodimers in the solid state. 1H NMR spectroscopic investigations of the four [2]catenanes demonstrated that supramolecular homodimers are also formed (Ka= 17-31M(-1), T= 185 K) in (CD3)2CO solutions. Dynamic 1H NMR spectroscopy revealed that the 1,5-dioxynaphtho[38]crown-10 and tetracationic cyclophane components in the four [2]catenanes and in the three [3]catenanes circumrotate (deltaGc(not equal to) = 9-14 kcal mol(-1)) through each other's cavity in (CD3)2CO. Similarly, the 1,5-dioxynaphthalene and the bipyridinium ring systems rotate (deltaGc(not equal to) =10-14 kcal mol(-1)) about their [O...O] and [N...N] axes, respectively, in solution.  相似文献   

8.
The properties of tetrathiafulvalene dimers ([TTF](2)(2+)) and the functionalized ring-shaped bispropargyl (BPP)-functionalized TTF dimers, [BPP-TTF](2)(2+), found at room temperature in charged [3]catenanes, were evaluated by M06L calculations. The results showed that their isolated [TTF](2)(2+) and [BPP-TTF](2)(2+) dimers are energetically unstable towards dissociation. When enclosed in the 4(+)-charged central cyclophane ring of charged [3]catenanes (CBPQT(4+)), [TTF](2)(2+) and [BPP-TTF](2)(2+) dimers are also energetically unstable with respect to leaving the CBPQT(4+) ring; since the barrier for the exiting process is only about 3 kcal mol(-1), that is, within the reach of thermal energies at room temperature (neutral [TTF](2)(0) dimers are stable within the CBPQT(4+) ring). However, the [BPP-TTF](2)(2+) dimers in charged [3]catenanes cannot exit, because this would imply breaking the covalent bonds of the BPP-TTF(+) macrocycle. Finally, it was shown that the [TTF](2)(2+), [BPP-TTF](2)(2+) dimers, and charged [3]catenanes are energetically stable in solution and in crystals of their salts, in the first case due to the interactions with the solvent, and in the second case mostly due to cation-anion interactions. In these environmental conditions at room temperature the TTF units of the [BPP-TTF](2)(2+) dimers make short contacts, thus allowing their SOMO orbitals to overlap: a room-temperature multicenter long bond is formed, similar to those previously found in other [TTF](2)(2+) salts and their solutions.  相似文献   

9.
Oligothiophene [2]catenanes and knots containing up to 28 thiophene units have been studied at the BHandHLYP/3-21G level of theory. Small knots (less than 22 thiophene units) and [2]catenanes (less than 18 thiophene units) are strained molecules. Larger knots and [2]catenanes are almost strain-free. [2]Catenanes and knots having less than 18 and 24 units, respectively, show transversal electronic coupling destroying one-dimensionality of molecules reflecting in smaller band gaps compared to larger knots and catenanes. Ionization potentials of knots and catenanes are always higher compared to that of lineal oligomers due to less effective conjugation. Polaron formation in catenanes is delocalized only over one ring, leaving another intact. In the case of a knot containing 22 thiophene units, estimated polaron delocalization is 8 to 9 repeating units.  相似文献   

10.
A variety of novel calix[4]arene-incorporating crown ethers with or without intramolecular hydrogen bonding have been prepared by two efficient methods and utilized as donor rings to assemble calix[4]arene [2]catenanes based on pi-stacking interaction between hydroquinone and bipyridinium units. Treatment of calix[4]arene crown ethers 4, 10a, or 10b, whose cone conformation was fixed by intramolecular hydrogen bonding within the calix[4]arene moiety, with dicationic salt 15 x 2PF6 and dibromide 16 afforded the corresponding [2]catenanes 17a x 4PF6, 17b x 4PF6, and 17c x 4PF6 in 20%, 53%, and 55% yields, respectively, whereas from the reactions of 15 x 2PF6 and dibromide 16 in the presence of conformationally flexible 11 or 12 with a cone conformation kept by two propyl groups, [2]catenanes 18 x 4PF6 and 19 x 4PF6 were obtained in 12% and 6% yields. [2]Catenanes 21a x 4Cl, 21b x 4Cl, and 21c x 4Cl, incorporating calix[4]arene in both the donor and acceptor rings, were also successfully assembled from 10a or 10b, 16, and dicationic salts 20a x 2PF6 or 20b x 2PF6. The dynamic 1H NMR and absorption spectra of the [2]catenanes have been investigated, which revealed a strongest donor-acceptor interaction in 17a x 4PF6 and that the cone [2]catenanes 17a-c x 4PF6 can isomerize to the partial cone isomer at high temperature. The difference of the dynamic properties of these catenanes was discussed. The results demonstrate that catenation is one new general method to change the conformational distributions of calix[4]arenes.  相似文献   

11.
Encouraged by the prospect of producing an electrochemical, color‐switchable red–green–blue (RGB) dye compound, we have designed, synthesized, and characterized two three‐station [2]catenanes. Both are composed of macrocyclic polyethers containing three π‐electron‐rich stations, which act as recognition sites for a π‐electron‐deficient tetracationic cyclophane. The molecular structures of the two three‐station [2]catenanes were characterized fully by mass spectrometry and 1H NMR spectroscopy. To anticipate the relative occupancies of the three stations in each [2]catenane by the cyclophane, model compounds with the same constitutions in the vicinity of the stations were synthesized. The relative ground‐state populations of the three stations occupied in both [2]catenanes were estimated from the thermodynamic parameters for 1:1 complexes between all these model compounds and the cyclophane, obtained from isothermal titration calorimetry (ITC). The electrochemical and electromechanical properties of the three‐station [2]catenanes were analyzed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and spectroelectrochemistry (SEC). The first three‐station [2]catenane was found to behave like a bistable system, whereas the second can be described as a quasi‐tristable system.  相似文献   

12.
Charged donor-acceptor [2]catenanes containing cyclobis(paraquat-p-phenylene) as the ring component can be synthesised in yields of up to 88% in under one hour by heating two precursors in the presence of macrocyclic polyether templates in N,N-dimethylformamide at 80 °C.  相似文献   

13.
The template effects exerted by bis(p-phenylene)[34]crown-10 (3) and by 1,5-dinaphto[38]crown-10 (4) in the ring-closure reaction of the trication 2(3+) to yield the [2]catenanes 7(4+) and 8(4+) have been quantitatively evaluated in acetonitrile at 62 degrees C by UV/visible spectroscopy. The rate of ring closure of the trication 2(3+) dramatically increases in the presence of the templates 3 and 4, up to approximately 230 times at [3] approximately equals 0.1 molL(-1), and up to approximately 1,900 times at [4] approximately equals 0.01 molL(-1). The outcome of kinetic selection experiments, in which the two crown ethers compete for the incorporation into the catenane structure, has been discussed in the light of the obtained results. It has been shown that the product ratio of catenanes obeys the Curtin-Hammett principle only if the concentrations of the templates are equal and much greater than that of the substrate. Analysis of the rate profiles has shown that the 1,5-dioxynaphthalene unit, present in the template 4, has a greater affinity than the 1,4-dioxybenzene unit, present in the template 3, for the electron-deficient pyridinium rings present in both the transition-state and substrate structures. Ab initio calculations at the 3-21G and 6-31G(d) levels of theory indicate that the greater affinity of the 1,5-dioxynaphthalene unit cannot be explained on the basis of greater pi-pi stacking and [C-H...pi] interactions, but rather on the basis of the model of apolar complexation in which the solvent plays a major role.  相似文献   

14.
Chirality can hold the key to inducing directionality of motion in components of molecular devices. With this idea in mind, we describe here 1) the template-directed synthesis of two [2]catenanes wherein cyclobis(paraquat-p-phenylene) is interlocked with polyether macrocycles containing, in addition to one 3,5-bis(oxymethylene)-1H-1,2,4-triazole unit, either one 1,4-dioxybenzene or one 1,5-dioxynaphthalene ring system. We also report 2) the full characterization of both [2]catenanes by fast atom bombardment mass spectrometry (FABMS), X-ray crystallography, and dynamic (1)H NMR spectroscopy. We reveal 3) the fact that the [2]catenanes not only exist, both in the solution-state and in the solid-state, as strictly one of the two possible translational isomers, but that they also exhibit spontaneous resolution on crystallization leading to formation of homochiral crystals, as indicated by X-ray crystallography and circular dichroism (CD) experiments. Finally, we comment 4) on the chances of switching these catenanes chemically.  相似文献   

15.
A series of molecular metalla[2]catenanes featuring Cp*Ir vertices have been prepared by the template‐free, coordination‐driven self‐assembly of dinuclear iridium acceptors and 1,5‐bis[2‐(4‐pyridyl)ethynyl]anthracene donors. The metalla[2]catenanes were formed by using a strategically selected linker type that is capable of participating in sandwich‐type π–π stacking interactions. In the solid state, the [2]catenanes adopt two different configurations depending on the halogen atoms at the dinuclear metal complex bridge. Altering the solvent or the concentration, as well as the addition of guest molecules, enabled controlled transformations between metalla[2]catenanes and tetranuclear metallarectangles.  相似文献   

16.
Dinuclear square metallocycles 3a,b assemble spontaneously when M(en)(OTf)2 (M = Pd, Pt) and a 4,4'-bipyridinium ligand are mixed in acetonitrile. Six new [3]catenanes were prepared in good yields by thermodynamically driven self-assembly reaction of molecular squares 3a,b and pi-complementary dioxoaryl cyclophanes. Single-crystal X-ray analyses of the [3]catenanes revealed the insertion of two aromatic units inside the metallocycle cavity. The structures are stabilized by means of a combination of pi-pi stacking, [C-H...pi] interactions, and [C-H...O] hydrogen bonds. [3]Catenane (DB24C8)2-(3a) showed in solid-state two external DB24C8 rings positioned over the Pd(en) corners, which are held in position by [N-H...O] hydrogen bonds. Furthermore, formation of catenane (DB24C8)2-(3a) can be switched off and on in a controllable manner by successive addition of KPF6 and 18-crown-6.  相似文献   

17.
A new type of self-complexed bis-crown ether containing two bis(p-phenylene)-34-crown-10 (BPP34C10) ether rings and two secondary ammoniums has been synthesized and characterized. The formation of these bis-self-complexes has been identified by NMR spectroscopy, mass spectrometry and X-ray analysis. The acid/base controlled movement of these bis–crown ethers can mimic a flapping butterfly.  相似文献   

18.
From the reaction between a dinuclear paddle-wheel carboxylate, namely [Cu2mu-(O2CCH2C4H3S)4] (1), and the flexible ligand 1,3-bis(4-pyridyl)propane (BPP) a neutral 2-D coordination polymer [[Cu2(O2CCH2C4H3S)4mu-(BPP)2]]n (2) was obtained. Compounds 1 and 2 were characterized by means of elemental analysis, thermal analysis (TG/DSC), vibrational spectroscopy, and electron paramagnetic resonance (EPR). The crystal structure of 2 reveals that each Cu(II) is coordinated by two nitrogen atoms from different BPP ligands and two 3-thiopheneacetate groups within a distorted square planar geometry in a trans-[N, N, O, O] arrangement. The BPP ligand adopts a TG conformation bridging two copper centers giving rise to a 1-D sinusoidal polymeric chain along the crystallographic c axis. Adjacent 1-D chains are extended into a 2-D coordination network through pairs of monatomic carboxylate bridges in direction of the b axis. This bridging mode affords centrosymmetric dimeric units Cu2O2, and therefore, the copper ions are involved in a CuN2O2O' chromophore displaying a (4 + 1) square pyramidal coordination in the resultant 2-D polymeric network. The polycrystalline X-band EPR spectrum of 2 at room temperature is characteristic of a triplet state with nonnegligible zero-field splitting in agreement with the crystal structure. Crystal data for 2: monoclinic, space group P2(1)/c, a = 9.4253(10) A, b = 10.9373(10) A, c = 23.6378(10) A, beta = 98.733(4) degrees, Z = 2.  相似文献   

19.
We report a design strategy for integrative assembly of heteromeric [2]catenanes. The design focuses on the shape and functional group match of two different metalla-rectangles. A series of dipyridyl ligands with different lengths, widths and functional groups were designed and used for assembly experiments. Six heteromeric [2]catenanes were obtained both by direct mixture of two pre-assembled metalla-rectangles and one-pot three-component self-assembly. Multiple analytic methods were employed to characterize the catenanes, including single crystal X-ray diffraction analysis, NMR spectroscopy, mass spectroscopy and elemental analysis.  相似文献   

20.
The reaction of the digold(I) diacetylide [(AuCCCH2OC6H4)2CMe2] with diphosphane ligands can lead to formation of either macrocyclic ring complexes or [2]catenanes by self-assembly. This gives an easy route to rare organometallic [2]catenanes, and the effect of the diphosphane ligand on the selectivity of self-assembly is studied. With diphosphane ligands Ph2P(CH2)xPPh2, the simple ring complex [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)] is formed selectively when x = 2, but the [2]catenanes [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)]2 are formed when x = 4 or 5. When x = 3, a mixture of the simple ring and [2]catenane is formed, along with the "double-ring" complex, [Au4[(CCCH2OC6H4)2CMe2]2(Ph2P(CH2)3PPh2)2] and a "hexamer" Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)3PPh2)]6] whose structure is not determined. A study of the equilibria between these complexes by solution NMR techniques gives insight into the energetics and mechanism of [2]catenane formation. When the oligomer [(AuCCCH2OC6H4)2CMe2] was treated with a mixture of two diphosphane ligands, or when two [2]catenane complexes [[Au2[(CCCH2OC6H4)2CMe2](diphosphane)]2] were allowed to equilibrate, only the symmetrical [2]catenanes were formed. The diphosphanes Ph2PCCPPh2, trans-[Ph2PCH=CHPPh2] and (Ph2PC5H4)2Fe give the corresponding ring complexes [Au2[(CCCH2OC6H4)2CMe2](diphosphane)], and the chiral, unsymmetrical diacetylide [Au2[(CCCH2OC6H4C(Me)(CH2CMe2)C6H3OCH2CC)] gives macrocyclic ring complexes with all diphosphane ligands Ph2P(CH2)xPPh2 (x = 2-5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号